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Introduction. It is our purpose in the present note to present a
general existence theorem for noncoercive elliptic boundary value
problems for operators of the form:

(1) A(u) = IAT.: (_1)‘0“DaAa(x1 Uy * * 0y Dm“))

alsm

on closed subspaces V of the Sobolev space W™?(G), G an open subset
of R*», n=1. This existence theorem is based upon an extension of the
theory of the generalized topological degree for 4-proper mappings
of Banach spaces introduced in Browder-Petryshyn [8], [9], and, in
particular, on an extension of the Borsuk-Ulam theorem to pseudo-
monotone mappings T from a reflexive separable Banach space V to
its conjugate space V*.

To make a precise statement of our general existence theorem
possible, we introduce the following notation: For a given m =1, we
let £ be the m-jet of a function # from R* to R® for some given s=1,
ie £={ta:|a| =m}, and set

¢ = {tat|a| =m}, 9= {n:]|B| Sm—1},

where each £,, {4, and 7 is an element of R*. The set of all £ of the
above form is an Euclidean space R, and correspondingly, { € R™,
nE R,

For each a, 4. is assumed to be a function from G X R™ to R* satis-
fying the following conditions:

Assumptions on A(u):(1)A.(x, £) is measurable in x for fixed & and
continuous in & for fixed x. For a given p with 1 <p < «, there exists a
constant ¢ such that

I Aa(x) E)' = C((l =+ Z l Ealpaﬂ>

1Blsm
with pas = (p—1) for ‘a| =|B‘ =m, and
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np+p(m—|a|)—-—n’ z:fm——lslals‘m
n—pm—|8]) p -

Do <

n
m——= 8] =m,

18] + || <2m,
np
n—pm— |8])

Pas = if la| <m—=,
?

n
m——= 8] =m.

(2) IfE=(¢, ), then for each x in G, n in R, { and {' in R~ with
$#=L,
E <Aa(x) $s "7) - Aa(x: ¢ 77)’ $a — fti} > 0)
lal=m
(where (-, - ) denotes the inner product in R?).
(3) For each v and v’ in R,
Z <Aa(xy§‘:77)—7ay§-a—7;>'_)°° (Ig-l "—)w)’
la|=m
uniformly for bounded .
Let Wm»(G) be the Sobolev space of s-vector functions # such that
u and all its derivatives D2u for [a| =m lie in L?(G) where p is the
exponent involved in the inequalities of Assumption (1). Then
for any # and v in Wm?(G), we may define the generalized Dirichlet
form corresponding to the representation (1) by:
(2) a(u: Z)) = Z (Aa(g(u)); Dav)’
lalsm
where

Ew) = {Douz|a| Sm},  AEW)() = Aal(s, Ew) (),

(w, v) = f (w(x), u(x))dx, (integration with respect to
¢ Lebesgue n-measure).
THEOREM 1. Let G be an open subset of R™ with G bounded and the
Sobolev Imbedding Theorem valid on G (i.e. G satisfies mild smoothness

conditions on its boundary). Let A(u) be a quasilinear elliptic operator
of order 2m on G of the form

(1) A(w) = 3 (—1)1* DA, ((w)),

lalsm
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where the coefficient funciions A . satisfy Assumptions (1), (2), and (3)
above. Suppose that A(u) is odd in u, i.e. Aa(x, —£)=—A.(x, £) for
each o and all x in G, & in R™. For each w in V¥, the dual space of a
closed subspace V of Wm2(G), consider the problem of finding u in V
such that a(u, v) = (w, v) for all v in V. Suppose that there exists a con-
tinuous function ¢: RY—R+ such that for each solution u of this problem
for any w in V*,

®) [l = lledlwmocer = o([2llvs).

Then for each w in V*, there exists at least one solution w in V of the
problem: a(u,v) = (w,v) forallvin V.

We have used the notation (w, v) in Theorem 1 to denote the pair-
ing betweenwin V*and #in V.

THEOREM 2. Let G be a bounded, smoothly bounded open set in R* (as
in Theorem 1), and consider a one-parameter family of operaiors
A (u),tE]0, 1], where for each t,

@ i) = 25 (=)' DAu(6(w); 1)

lalsm
and the coefficient funciions are continuous in t, uniformly for bounded &
and all x outside a null set in G. For each t, we take the generalized
Dirichlet form

®) s, ) = T (45w); 0, D),
alsm

where we assume that A.(u) satisfies Assumpiions (1), (2), (3) for each
tin [0, 1]. Suppose that Ay(u) is odd, and that there exists a continuous
SJunction ¢: Rt*—R+ such that if a(u, v) = (w, v) for some win V*, u in
V,tin [0,1] and allvin V, then ||ully <¢(||w||v*).

Then the problem: ao(u, v) =(w, v) for all v in V; has a solution u in
V for each w in V*.

Theorem 2 includes Theorem 1 as the special case in which 4.(«)
=A(u) for all ¢ in [0, 1]. It also includes the standard existence
theorem for 4 (#) in which the Dirichlet form a(x, v) is assumed to
be coercive, i.e.

(6) There exists ¢c: Rt—R! with ¢(r)— o as r— o such that a(u, 1)
Z (||| )|l

Indeed, if A(x) is coercive, and if we set 4A,(u) =4 (u) —tA(—u)
for t in [0, 1], then Ao(x) =4 (u), A1(%) is odd, the Assumptions (1),
(2), and (3) hold for every A4.u), while since a.(u, u) =a(u, u) —
ta(—u, u) =a(u, u) +ta(—u, —u), it follows that
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ai(w, w) 2 (1 + Oc(|ul[n)]|ullv = c([|ufl )] ]|v

provided that ||u||y >R, where ¢(r)>0 for »>R. Suppose that for
some % in V,win V*and tin [0, 1], we have

a(u,v) = (w,0) (EV).
Then:

c(lullWlully < aun, w) = (w, w) < ||u]|

and as a consequence c(||ullv) <|jw|ly* if »=0. If we set ¢(s)=
sup {r:c(r) s}, it follows that []u”v éd)(”fw v+) and by Theorem 2,
the equation a(u, v) =(w, v) (v& V), has a solution # in V for each
win V*

Existence theorems for elliptic boundary problems of this type
were first obtained by Visik [15] using compactness arguments and
a priori estimates on (m+1)st derivatives. Monotonicity arguments
were first applied to these problems in Browder [2], [3], using the
basic existence theorem for monotone maps from a reflexive Banach
space V to V* proved independently by Browder [2] and Minty [12].
The existence theorem in the coercive case was extended to elliptic
operators A(u) satisfying Assumptions (1), (2), and (3) by Leray-
Lions [11]. Borsuk-Ulam theorems for monotone and semimonotone
operators in infinite dimensional Banach spaces were first derived by
Browder [4], [5], and were first applied to odd, homogeneous, elliptic
operators satisfying strong monotonicity conditions by PohoZaev
[14]. Theorem 1 was first obtained under a stronger hypothesis (3)’
rather than (3) in Browder [6], together with Assumptions (1) and
(2) on A(u). This is as follows:

(3)! There exist continuous functions k(n), ko(n) >0 such that

E <Aa(x: & 7])?0:) = ko(ﬂ) ] g-ip - k("?)s

lalsm

““V’

for all x in G, ¢ in Rm, q in R,

1. Proofs of Theorems 1 and 2 rest upon general results con-
cerning two classes of nonlinear mappings of monotone type from a
reflexive Banach space V toits conjugate space V*.

DEFINITION 1. Let V be a Banach space, V* its conjugate space, T a
mapping from Vio V*, Then:

(a) T s said to be pseudomonotone if for any sequence {u,} in V with
u; converging weakly to u in V such that lim sup(Tu;, uj—u) =0, it fol-
lows that for any v in V, lim inf (Tu;, u;—v) = (Tu, u—v).

(b) T is said to satisfy condition (S), if for any sequence u;in V with
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{uj} converging weakly to u in V for which im(Tu; uj—u) =<0, i
Jfollows that u; converges sirongly touin V.

ProrosiTION 1. Suppose that A satisfies Assumption (1). Then there
exists a conlinuous bounded mapping T of V into V* for a given closed
subspace V of Wm2(G) such that for all u and v of V, (Tu, v) =a(u, v).
If A(u) satisfies Assumptions (2) and (3), T is pseudomonotone. If
A (u) satisfies Assumptions (2) and (3)’, then T satisfies condition (S).4

The proof of Proposition 1 is given in §1 of [7], and Appendix to
§1. Pseudomonotonicity was first defined by Brézisin [1] (though our
definition differs slightly from his in considering only sequences
rather than filters). The condition (.S); was first defined in connection
with the study of nonlinear eigenvalue problems in Browder [6] and
is studied in detail in Browder [7], [8].

THEOREM 3. Let V be a reflexive separable Banach space, T a map-
ping of V into V* which is pseudomonotone, bounded on bounded sets,
and continuous from each finite dimensional subspace of V to the weak
topology of V*. Then:

(@) If T is an odd mapping outside of some ball around the origin and
if T-Y(B) is bounded for any bounded subset B of V*, then R(T), the
range of T, is all of V*.

(b) If {Tt} is a family of bounded, pseudomonolone, finitely con-
tinuous mappings from V to V* which is continuous in t uniformly on
bounded subsets of V, with To=T, T1 odd outside some ball, and if there
exists a function ¢:RY— R such that T(u) =w implies that

llul = 6(l=l) @€ o, 1],
then R(T)=V*.

Theorem 3 and Proposition 1 together imply the validity of The-
orems 1 and 2. Theorem 3 follows from an extension to the class of
pseudomonotone mappings from V to V* of the theory of the general-
ized degree defined for A-proper mappings of Banach spaces in
Browder-Petryshyn [9], [10] and applied to mappings T from a
reflexive V to V* satisfying condition (S) in Chapter 17 of Browder
[8]. The basic facts are summarized in the following theorem:

THEOREM 4. Let V be a reflexive separable Banach space, V* its
conjugate space. Let T be a mapping from V to V* which is finitely con-
tinuous from V o V* (i.e. continuous from each finite dimensional
subspace of V to the weak topology of V*) and bounded (i.e. maps
bounded subsets of V into bounded subsets of V*). Then:
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(a) If T is pseudomonotone, there exists a sequence {T;} of finitely
continuous, bounded mappings, each satisfying condition (S),, which
converges to T uniformly on every bounded subset of V.

(b) If T satisfies condition (S),, then T is A-proper in the following
sense [9], [10]: If B is a closed ball of V, { V,-} an increasing sequence
of finite dimensional subspaces of V whose union is dense in V, and if
for each j, u; is an element of Vi\B such that for a given element w
of V*,

4 Tu; — giullyr >0 (- ),

where ¢; is the injection map of V;into V, ¢, the projection map of V*
onto V), then there exists an infinite subsequence {u,-(k) } converging
strongly to an element u of B such that T (u) =w.

The proof of Theorem 4 is given in Chapter 17 of Browder [8].
The second property tells us that the generalized degree theory of
Browder-Petryshyn [10] applies to mappings T satisfying the con-
dition (S),. (for the details of this application, see[8]). The correspond-
ing generalized degree theory for pseudomonotone maps follows
from the convexity of the class of T satisfying (S),. and the following
theorem whose proof will be published elsewhere:

THEOREM 5. Let X and Y be Banach spaces, G a bounded open sub-
set of X, and consider an oriented approximation scheme {(X,,, Y.,
P, Qn) } for mappings T of cl(G) into Y in the sense of [10). Let Z be a
convex family of A-proper mappings from cl(G) to Y with respect to the
given approximaiion scheme. Let T be a mapping from cl(G) to Y which
s the uniform limit on cl(G) of mappings T; from the class Z. Then:

(a) For any sequence { T ,-} from Z converging to T, if w does not
lie in cl(T(bdry(G))), then Deg(T;, G, w) is the same for all j sufficiently
large and does not depend upon the choice of {T;}. We denote this limit
as Deg(T, G, w).

(b) Deg(T, G, w) is invariant under homotopy and weakly additive
in the sense of Theorem 1 of [10]. If Deg(T, G, w) {0} and if T(cl(G))
s closed in YV, then w lies 1n T(cl(G)).

(c) If T is odd in the sense of Theorem 1 of [10], then Deg(T, G, 0)
consists only of odd integers, and Deg(T, G, 0) = {0 }

ApDED IN PROOF. Results closely related to Theorem 5 have also
been obtained by P. M. Fitzpatrick in connection with his Rutgers
Ph.D. dissertation.
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