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1. Introduction. The problem of imbedding a closed differentiable 
manifold Mn in a euclidean space can be weakened through the notion 
of (modulo 2) cobordism as follows. Is Mn cobordant to a submanifold 
of Rn+k7 In this context we can prove an analogue, with improved 
dimensions, of H. Whitney's theorems [ l l ] , [12]. Leta(n) denote the 
number of ones in the binary expansion of n, and let n> 1. 

THEOREM A. Any Mn is cobordant to a manifold Nn that imbeds in 
#2n-«(»)+l an(l immerses in R2n-*(n)t 

For n^3 this result is best possible as the examples below show. In 
some cases we can say more if certain Stiefel-Whitney numbers of Mn 

are zero. Allow the empty set as a representative of the zero cobord
ism class. (Thus Theorem A holds for all n.) 

THEOREM B. (i) If n is even (n?*6) and if wa(n)'Wn^a(n)(Mn)=0 
then Mn is cobordant to a manifold Nn that imbeds in R2n~<*w and 
immerses in 2?2»-«(»>-i. 

(ii) If n = 2k or 2* + l and if Wi-wn-i(M
n)==Q for 0^i^s<>3 then 

Mn is cobordant to a manifold Nn that imbeds in J£2n~« and immerses in 

Let Sft* denote the modulo 2 cobordism ring, and let MO(k) denote 
the Thorn complex for 0(k). There are homomorphisms 
*(», *) : *n+k(M0(*)) -> 9tn and ¥(», *, N) : Tn+k+N(SNMO(k)) -+ 5ft*. 

The image of $(w, k) is the set of cobordism classes that can be repre
sented by submanifolds of Rn+k and hence coker $(w, k) = 0 if k>n 
—a(n) by Theorem A. The image of ^(w, k, N) (N^>k) is the set of 
cobordism classes that can be represented by manifolds which im
merse in Rn+k (see R. Wells [lO]) and hence coker W(n, k, N) = 0 if 
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Real projective w-space Pn (n = 2k+l, k>l) is known not to imbed 
in R2n~2 (see J. Levine [2]) but is cobordant to Sn which does. Com
plex projective w-space CPn (n = 2k, k>l) does not immerse in i?4n~2 

(see J. Levine [3]) but is cobordant to PnXPn which does. Hence in 
Theorem B it is sometimes necessary to have Mn9£Nn. However we 
know of no manifold Mn that does not imbed in 2?2n-aoo+i and im
merse in jR2n-a(n\ 

2. Decomposables in 91*. The main theorems are proved by im
bedding and immersing manifolds constructed from real projective 
spaces until we have enough to form a basis of 91*. We illustrate the 
method by outlining the proof of Theorem A. 

PROPOSITION 2.1. Suppose for each n5*2k — l there is a manifold Vn 

whose cobordism class [Vn] is an indecomposable element of 9Î* and 
which imbeds in i£2n-a(n)+i an^ immerSes in R2n-<*(n\ Then Theorem A 
holds. 

PROOF. According to R. Thorn [9] the cobordism classes [Vn] 
generate the ring 91*. Given a product Mn = H Vj we can use the 
product immersion to immerse Mn in (^(2j -~a.{j)))-spa,ce. Because 
a(i+j)^a(i)+a(j) we have actually immersed Mn in (2n—a(n))-
space or better. The product imbedding is not good enough, so to 
imbed Mn in (2n —a(w) + l)-space we use inductively the following 
well-known result. (For a three line proof see [7].) 

LEMMA 2.2. If Mm imbeds in R8, Nn immerses in JRe, and s+t>2n 
(which is true ifm^n) then MmXNn imbeds in R*+K 

Any Mn is cobordant to a disjoint union of products of the V* and 
we can imbed and immerse this disjoint union in the obvious way, 
thus proving Theorem A. 

3. Construction of indécomposables. Let n be even and let 
n=zri-\- . . . -f-̂  ( 2 ^ f i < • • • O*) be the binary expansion of n as 
a sum of distinct powers of 2. Thus a(n)=k. Let Vn~Pn if fe = l 
and for k>l let Vn be a submanifold of Kn+1 = Pr*+1X Tiï-l pr{ 

dual to a i + • • • +ai6ÇzH1(Kn+1; Z2) where at- generates the modulo 2 
cohomology ring of the i th factor. 

PROPOSITION 3.1. [Vn] is an indecomposable element of 91* and Vn 

satisfies the conditions of Proposition 2.1. 

PROOF. The first part follows from a computation of the total 
Stiefel-Whitney class w(Vn) and from standard arguments using ele
mentary symmetric f unctions (see R. E. Stong [8, p. 79]). The second 



i97o] IMBEDDINGS, IMMERSIONS, AND COBORDISM OF MANIFOLDS 765 

part is based on an immersion of Pn (w==2* + l) in R2n~z due to B. J. 
Sanderson [ô]. Whitney's results (Mn imbeds in Jf?2w and immerses in 
jR2n_1) and the product immersion or inductive use of Lemma 2.2 
finish the proof. 

REMARK 3.2. Mn= Ü L i Pr* has wk-wn-.k7*0 and hence furnishes a 
counterexample to improving Theorem A when n is even. 

The above construction, of even dimensional generators was in
spired by the work of J. Milnor [5] and the following is a modification 
of A. DokTs construction of odd dimensional generators of 91* [ l ] . 
Given a positive integer m and a topological space X form P(m, X) 
from SmXX XX by identifying (u, x% y) with ( — u, y, x). 

PROPOSITION 3.3. P(m, Mn) is an (m+2n)-manifold and represents 
an indecomposable element of 5ft* if and only if [Mn] is indecomposable 
and the binomial coefficient f ^ ^ s l (mod 2). 

A map X—» Y induces a map P(my X)—>P(m$ Y) and differentiate 
imbeddings and immersions are preserved by this functor. Also 
P(m, R8) is the total space E(sym®se) where ymi e are respectively the 
canonical line bundle and the trivial line bundle over P m . Thus we 
have proved 

PROPOSITION 3.4. If Mn imbeds (immerses) in R8 and E(sym®se) 
imbeds (immerses) in R* then P(m, Mn) imbeds (immerses) in R*. 

Now let n be odd, n^2k — 1. We can write uniquely n = 2 r (2s+ l ) — 1 
= 2 ' - l + 2 ' + 1 s ( r > 0 , s > 0 ) . Let a = 2 ' - l , b = 2's and V*=P(a, Vh). 

PROPOSITION 3.5. Vn satisfies Proposition 2.1. 

PROOF. By Propositions 3.1 and 3.3, [Vn] is indecomposable. Using 
the imbedding and immersing part of Proposition 3.1 we can apply 
Proposition 3.4 to reduce the proof to imbedding and immersing cer
tain sums of line bundles over Pa. Now the work of M. Mahowald 
and R. Milgram [4, Lemma 1.5] gives the required result. 

REMARK 3.6. Using the notation of the beginning of this section let 
Afn+1 = P ( l , irk)xfliZlPr*. If n>2 then wk+vwn^h^(Mn)^0 so 
Mn+1 serves as a counterexample to improving Theorem A. 
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