
ENERGY FLOW: WAVE MOTION AND 
GEOMETRICAL OPTICS1 

BY CATHLEEN S. MORAWETZ 

ABSTRACT. Energy distribution for solutions of the wave 
equation in the presence of a reflecting body can be investigated 
with varying degrees of refinement by using quadratic inequalities, 
Huyghens principle and geometrical optics. The relations between 
these properties and their validity in general cases is discussed and 
some of the simpler proofs outlined. 

1. Introduction. This paper deals with the motion of conservative 
systems, i.e. systems whose total energy remains the same for all 
time. Energy in general is a positive functional of the instantaneous 
state of the system ; for systems governed by linear equations energy 
is a positive definite quadratic form. Conservation of energy implies 
that if the initial state is zero, so are all subsequent and previous 
states; for linear systems we conclude that solutions are uniquely 
determined by their initial data. For solutions with nonzero initial 
states the conservation of energy furnishes an a priori bound which, 
when combined with orthogonal projection techniques, yields a proof 
of the existence of solutions with arbitrarily prescribed initial data 
with finite energy. 

Thus for conservative systems we can prove rather easily the 
existence and uniqueness of solutions. Current research is directed at 
establishing more detailed properties of the way solutions evolve in 
time, in particular for systems located in an unbounded domain 
interest focuses on the following problems: 

I. Energy flow. In the course of time where will the energy or 
amplitude of a solution be concentrated? Will it eventually diffuse to 
infinity? 

II . Transport of singularities. If the data contain singularities how 
and where are they propagated? 

I I I . Asymptotic description. What is the behavior of highly oscilla­
tory solutions? Can they be described by a simplified theory? An 
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example would be the geometrical optic description of wave motion. 
IV. Scattering. What is the relation between the solutions for large 

negative times and large positive times? How does the behavior a t 
infinity alter as the equation or domain is varied away from infinity? 

For all the problems of physics with questions fitting into this 
simple list, the answers are basically known but lack mathematical 
proof except in special cases. The best investigated are those con­
nected with Schrödinger's equation, Maxwell's equations and the 
classical wave equation. But unsolved problems abound in the theory 
of water waves. For example, if you rock a boat and then stop, clearly 
the energy is transported to infinity in waves but this answer is not 
mathematically established. 

The theory for the classical wave equation also has had many gaps, 
some of which have been filled within the past few years. I t is this 
theory that constitutes this paper. Apologies are due for its even 
narrower scope which concentrates on the work the author has been 
involved in, and cavalierly disregards the rest, in particular the intri­
cate and difficult details of the diffraction work done by J. B. Keller 
and co-workers which revived the interest in this subject. 

Thus we are henceforth dealing with solutions u of 

(1) \~}u — Uu — Au = 0 

in some infinite domain 8 to be specified later. 
We define the energy at time t in a subdomain 3D of 8 to be 

(2) £(*,©) = f (| Vu\* + ih\d%\. 

The Cauchy data are 

(3) u = <£, ut = $, for t = 0, x G 8. 

To complete the definition of the problem we would need to specify 
8 and some appropriate boundary data on 98, the boundary of 8, 
which will ensure that the total energy is conserved, i.e. £ (8 , /) 
= constant. 

2. Free space solutions. We first recollect the answers to our ques­
tions for the simplest problem where 8 is all of space. Suppose the 
Cauchy data have compact support k, 

(4) 4 s ^ = 0 for | x | > *. 

I. By Huyghens' principle, if the number of space dimensions is 
odd, 
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u s 0 f or | x | < t + * 
or 

E(t, 3D) = 0 for t large enough. 

If n is even 

« = 0Q-1), E(t, ©) = 0 ( r 2 ) , 

for £—» co. 
In both cases the main energy travels in a ring off to infinity since 

by a domain of dependence argument u == 0 f or | x \ > t+k. 
II. A singularity at a single point x0 in the initial data propagates, 

for any dimension, along the characteristic cone \x— x0\ = ±t (with 
its integrated magnitude undiminished). A general singularity can 
be studied using either a fundamental solution or more simply the 
Fourier transform in space. The main result is a generalized Huy-
ghens' principle,2 that is independent of dimension. 

Let the support of the singular part of the Cauchy data be k' and 
the rest be C00. Then u £ C00 for | x | ^ - f e ' a n d |* | ^t+k'. 

III. The asymptotic question is very easily answered. The periodic 
solutions UeiXt satisfy the reduced equation AU+\2U = 0 and their 
complete behavior is given by using the fundamental solutions or the 
plane waves for integral representations and evaluating the integrals 
asymptotically for large X. 

IV. The behavior of solutions of D ^ = 0 at large distance and for 
large times is given by 

u ~ r~w/2/(fi!, r - t), t-+<x> 

~r~ w / 2 g(0, r + t), *-»oo 

where fi represents the angular variables. 
The differential equation has the effect of a mapping 9TÏ, g = 9TC/. 
The answer to the last part of the scattering question depends on 

what one does to the equation. I t is easy to construct weak perturba­
tions of the equation3 so that this behavior is preserved but the map­
ping, say 2flX', is different. Then the perturbed equation and its prop­
erties can be completely analyzed by studying the scattering operator 
SfïT^Sfll'. The perturbation we are concerned with in the future con­
sists in cutting a finite region out of the infinite domain. 

3. The boundary value problem. Let 8 be the domain outside a 
finite body (B=ôS on which we prescribe an energy-conserving 
boundary condition 

2 See Courant and Hubert [l, pp. 735-736], 
8 A class of nonlinear perturbations can also be treated, see Strauss [2]. 
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u = 0 or du/dn «= 0. 

We can also consider the commonly occurring condition du/dn+yn 
= 0, y(x) ^ 0, which conserves E' = £(8 , /) +ƒ& yuHa. Known results 
are similar to the Neumann problem. 

In all cases the proof of energy conservation is given for odd dimen­
sions by differentiating the energy, using the differential equation, 
integrating by parts and applying the boundary condition. 

I. The most general result on energy flow is that E{t, 3D)—»0 as 
t—» oo. This was first proved for odd dimensions by Lax and Phillips 
[3]. It was also proved by establishing the existence of a wave oper­
ator for all dimensions by Schenk [4] and by the limiting absorption 
principle by Eidus [5]. The solutions are defined only in the distribu­
tion sense but the energy, given by the initial data 

£(*,£)= ƒ (\V4>\* + V)\dx\ 

must be bounded. 
There also exist indented bodies for which this is the best result, 

see Ralston [6], in the sense that by choosing the initial data suffi­
ciently roughly one can have E(t, S))/E(t, S) arbitrarily close to 1 for 
arbitrarily large times. 

On the other hand, if the body is star-shaped or close to it and the 
boundary condition is 

(5) u = 0 on <B (the reflection condition) 

the decay of energy is rapid. Reflecting the power of Huyghens' 
principle in odd dimensions one has 

E(t9 £>) = 0{e~at) for n odd, 

while 

E(t, 2D) = 0(t~2) for n even. 

One sees this result easily for spheres by separating variables, see 
Wilcox [7]. For the general three-dimensional case using semigroups 
see Lax, Morawetz and Phillips [8] and without semigroups Mora-
wetz [24]; the even dimensional result is contained in [9]. 

I I . In connection with the transport of singularities we may sup­
pose the singularity is isolated initially at #o. One expects from 
special cases, see [lO], that, after propagating to the body along 
the characteristic cone it is reflected along the envelope of the re­
flected characteristic cones. Equivalently, the singularity distributes 
itself and runs along the rays from the source x0 to the body. There 
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it is completely reflected along the customary reflected ray and 
behind the body, in its shadow, there are no singularities. This gen­
eralized Huyghens' principle has been proved for reflecting convex 
three-dimensional bodies provided the initial singularity is away from 
the body [ l l ] . 

This result can be used via the Riemann function, see [12] and 
[13], to prove the following theorem which is also a weak generalized 
Huyghens' principle: 

SMOOTHNESS THEOREM. If (B is convex and <ƒ>, \[/ are distributions of 
support k, and order 0, then f or n = 3, u(x, t)QCm for \x\ <k% and t>T 
with r = T(k\, k2l 0, m). 

We would really expect that the domain of smoothness would be 
defined by the interior of the envelope of all the characteristic cones 
issuing from within the singular support and then reflected from the 
body. However this has been shown so far only in special cases. 

An alternative way of describing the smoothness theorem is that 
the solution operator acting on the Cauchy data and defined by 
solving the wave equation (1) and the boundary condition (5) is 
smoothing in the restricted sense that it takes rough initial data and 
smooths them in any finite region after sufficient time. An ultimate 
consequence of this is a theorem of Lax and Phillips, see [22], which 
gives the asymptotic description of the solution in exponential modes: 

« ~ X) 0»(ff)0"*' as / —> 00, # £ £), 

where a<(x) is a solution of Aa*—/4a* = 0 in 8, a7; = 0 on (B with the 
special property that if w» satisfies (1) in free space and #* = #»•, 
uu=fXiai for t = 0 then ju; = 0 for t<T(%). 

The proof of the smoothness theorem leads us naturally into 
geometrical optics and so we sketch this proof before coming to 
Question I I I . 

The solution u(x, t) of (1), (3), (4), (5) can be represented in terms 
of the Riemann or source function S(x, y, t) as 

u = 1 (Sty + St<t>)dy 

where »S satisfies 

Stt - A ^ = 0, in 8, 

5(0, x, y) = 0, 
(6) 

St(0,x,y) = « ( y - a ) , 
S(t, x, y) * 0, for x £(B. 
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Thus if we know the behavior of S for all values of y it is easy to 
determine the behavior of u. The behavior of 5 ön the other hand can 
be found from its Fourier transform 

e**Sdt 
o 

which satisfies the reduced wave equation problem : 

AG + X2G = ô 0 - y ) , 

(8) G = 0, for x G (B, 

Gr - i\G + G/r ~ o(r~2), 

withr = \x\. 
The last condition is a variation of the Sommerfeld radiation con­

dition which can be derived from it by using the far field expansion. 
At any rate if such a G can be constructed and its transform taken it 
will yield the source function 5. That there exists a Green's function 
for every real X, follows from the general existence theorem estab­
lished by Kupradse and Weyl. For bibliography and related existence 
theorems see Werner [14]. 

By inverting the transform one sees that the singular behavior of 
5 is determined by the behavior of G for large X. 

On the other hand the high frequency behavior of the periodic 
solutions of the wave equation, Question III , also requires the asymp­
totic behavior of the Green's function G. Thus in either case we must 
settle the problem of geometrical optics. 

4. Geometrical optics problem. We recollect that the general form 
of the geometrical optics solution, GGO to (7) consists of the source 
£ Ï X U - Î / | / | X _ _ ^ | a n ( j a scattered wave. Thus 

(9) GGO - e*M/ \x-y\ + e^(xo + X^xi + • • • + X-***). 

The function <j> satisfies | V^| 2 = 1 and is in fact distance along the 
reflected ray from the body. The functions, xo, Xi> * • • > each satisfy 
a first order ordinary differential equation along the reflected rays 
which is found by inserting GGO in the differential equation of (8) and 
equating coefficients of the inverse powers of X. They are uniquely 
determined by the reflecting boundary condition of (8) on (B. In the 
shadow, see Figure 1, the second term reduces to —c^*"^/\x~y\ 
and G G O ^ O . 

The differential equation is satisfied approximately since 

(10) (A + X2)GGo = 8(* -y) + M\-»+\ 
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The radiation condition of (7) is satisfied exactly because we chose 
the outward source for the first term. 

This solution gives of course a particle picture of light emitted at 
a high frequency from a source at y scattered in all directions and 
bounced from the body as if it were rigid and inelastic. 

I t appears that we could show that this particle or geometri­
cal optics model is valid if G ~ G G O = 0 ( X ~ ^ + 1 ) . We would also 
for our present purposes be able to show that the source function 
S~f e-^tGGodk and has the desired properties for the smoothness 
theorem. 

However the quantity M in (10) has highly singular properties 
where the shadow meets the illuminated region, see Figure 1. This 
affects the validity of geometrical optics and thus our proof. 

Penumbra 

Shadow X j \ 

/ / \ • 1 , u m i n a t e d region 

Source 

y 

FIGURE 1 

I t is in fact necessary to construct a much smoother asymptotic 
solution which incorporates the diffraction behavior at the shadow 
edge. This was first accomplished for the three-dimensional case by 
Ludwig [ l5] . The two-dimensional problem was treated by Byslaev 
[16] through a boundary layer technique and by Grimshaw [17] 
following a method used by Ursell [ 18 ] in the water wave problem. 
Ludwig's method is applicable to any number of dimensions and has 
been extended to a wide class of equations and boundary values. 
However its technical details are lengthy so that we shall restrict 
ourselves to describing the properties we need. I t is important to 
remember that it is not valid if the source is on the body. We denote 
this solution by GL- I t can be written in the penumbra as 
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GL = ^l*-»l/ | x — y I + I v(x, y, X, a)da 

where v is a smooth asymptotic solution of the reduced wave equa­
tion. From the properties of v one finds, see [ l l ] , 

2 _2V+2 / * 2 2 i i 

(A + X )GL = SO - y) + MLX , I r ML \ dx \ < oo, 

(11) GL = ML\~NI3+7!« on(B, 

VGW = MLX_iV/3+13/6 on (B, with * any tangent vector, 

GLd/dr - i\GL + GL/r = o(r~2). 

Here ML is bounded independent of X and x for x £ S . 
Furthermore in the shadow and in the illuminated region but not 

in an arbitrary neighborhood (the penumbra) of the shadow edge 
GGO-GL^OÇK-^1). 

Thus to establish geometrical optics in the lit and shadow regions 
we need only show that G~GL- The proof is supplied by an appropri­
ate estimating theorem, see [ l l ] : 

ESTIMATING THEOREM. Suppose U has continuous derivatives in 8, 
the domain exterior to a surface (B, and 

(12) 

lim 
R-+O0 

AU + \2U 

ƒ -I 

u 
Ur-

= ƒ in S, 

= g on <B, 

i\U+ U/r\h 0. 

Then if x - « ^ / 3 > 0 on (B, 

\U(x)\ ^A(\\f\\r-^+ |||gMr*) 

where\\f\\2=f&r2\f\2dx\ and | | |g| | |2=X2(max |g |)2+/(B | V^| 2^cr. The 
constant A is independent of X. 

Substitution of GL — G for U then yields the desired result using 
(11) since in our application the body is convex and hence strictly 
star-shaped. With a little refinement to improve the powers of X we 
finally obtain the following: 

ASYMPTOTIC THEOREM. {G — GL\ SM£K~N+Z with ML independent 
of x and X and \ G — GGO | < M\~'N+Z where M is bounded uniformly in 
every closed subdomain of S that excludes the shadow edge. 
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I t should be added that Ludwig's solution describes asymptotically 
the shadow field as it was originally described by Keller [l9J. How­
ever the estimating theorem gives us no direct information about its 
asymptotic validity since both solutions are exponentially small in 
that region. However Bloom [20] has recently applied these estimates 
to prove the validity of the diffracted pattern in certain cases. 

5. Proof of the estimating theorem. The estimating theorem is 
derived from energy estimates by using the fundamental solution 
F = eiXlx-vl/\x-y\ to obtain 

brU(x)= (Ff\dy\ + f (^—g^F~)da. 
J& J<$>\dn an/ 

Clearly if we could estimate dU/dn on (B say by ƒ& | dU/dn\ 2da we 
could obtain the pointwise estimates for U that are in the theorem. 
Equivalently since U = g on (B we could use estimates of ƒ& \d V/dn \ 2da 
where V = e~^rU. But F satisfies by (12) 

(13) -AV = - (2iX/r)(rV)r ~ e~^f 

and hence 

- 2 Re(rV)rAV = - 2 Re(r7)ter*rf 
or __ 

- 2 Re div(#-VF)VF + | VF | 2 - - 2 Re(rV)rer**f. 

Integrating over S and using the radiation condition from (12) we 
have 

C — dV C 
2 Re (x>VV) da+ | V F | 2 | ^ | 

J(& dn J e 

g f r~\rV)l \dx\ + 100 f r Y \ dx\. 

Applying the boundary condition and integrating the term on the 
right we find 

C \dV \2 f . • i i C Vd 
2 Re (*•») da+ | V F | 2 | dx\+ 2 Re (x't)(e~iXrg)t da 

J © I dn I J & J & dn 

- f | Vr\
2\dx\ + e, < 

100. 

where ^ ^ | | / | | 2 + | | | ^ | | | 2 ; ( )t means tangential gradient and / is a unit 
tangential vector. 
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Applying Schwarz' inequality we find since x • n > j8, 

c\dVr f i . I . 
J I dn I J 

This proves the basic estimate leading to the estimating theorem. 
To convert the behavior of G for large X into the singular behavior 

of S we have to study GL a little more closely in the penumbra but 
there is no real difficulty. To avoid moving the source right up to 
the body requires some tricks which are described in [12] and in [13]. 

This completes the main results for the first three questions. The 
scattering question is intimately related to both decay and smooth­
ness. The solution at infinity does behave like a free space solution, 
see Friedlander [21 ], and thus one can consider what one really has 
in the operator SKl'SHX-1. This subject has been treated at length in a 
monograph by Lax and Phillips [22 ] and the reader is referred to the 
relevant chapters. 

Appendix 1. Rates of decay. A rate of decay for the energy is most 
easily found by finding a suitable conservation identity. Let us look 
at the one-dimensional problem utt — urr = 0. Multiplying by 2ut 

yields the identity 
2 2 

(Ut + Ur)t ~ (2urUt)r = 0 

or on integrating 

ƒ 
2 2 

{ut + uT)dr + 2(urutdt) = 0 

for any closed curve. From this identity one gets energy conservation. 
But under any change of coordinates a vanishing line integral re­
mains a vanishing line integral and hence if the transformation leaves 
u a solution of the wave equation in the transformed coordinates we 
may possibly obtain a new vanishing line integral (or conservation 
identity) for u. The obvious shift transformation /—>at'+by r—>ar'+b 
yields the energy identity again. However the Kelvin transformation 
r ' = r / (r2 — t2), t' = t/(r2 — t2) yields the new conservation identity (on 
dropping the primes) 

{[(^ + Ö (^r + Ut) + (r — t) (ur — ut) ]dr + 4rt(ut + ur)dt) = 0. 

This identity could also be obtained by considering the transforma­
tion4 of the multiplier ut which is [(r2+t2)ut+2rtur]/(r2--t2)2 and 
applying it directly to the transformed domain. 

* See Morawetz [23] and [22]. 



!97o] ENERGY FLOW: WAVE MOTION AND GEOMETRICAL OPTICS 671 

One can generate another identity by applying a shift to our new 
identity. This, incidentally, exhausts the set of vanishing line inte­
grals whose integrands are quadratic in the derivatives. 

Clearly the same principles5 apply in higher dimensions and one 
gets in fact identities involving the angular derivatives as well as 
derivatives with respect to r, the distance outward and in. Thus in 
three dimensions the multiplier is (r2+t2)ut+2rtur+2tu. We present 
here only the integrated form for three dimensions where the integra­
tion has been carried out in 8 for 0<t^T on a solution u of (1), (3), 
(4) and (5). Thus if the solution u vanishes on (B, 

f [(f + t)\ur + UtY + (f - t)\ur - UtY 

+ 2(/ + t2)(\ Vu\2 -ul)]\d%\ 

rT r /du\* 
I I (x - n) I — ) dcrdt = constant. 

J0 J(B \dn/ + 
Here n is a unit normal into S from (B. The constant can be evaluated 
and is bounded by fc2£(0, 8). 

Since the body is star-shaped, x-n^O so that both integrands are 
positive and thus both integrals are bounded by k2E(0, 8). Hence the 
contribution to the first integral from \x\ <K is also bounded. But 
there (r+t)2>t2/2, (r-t)2>t*/2, (r2+t2)>t2/2 for / large enough. 
Hence 

/
t{ | Vu f + ut) | dx ( 

t=*T; \x\<K 

being bounded by this contribution is also bounded by k2E(0, 8). 
Thus we have E(t, Z))<(k/t)2E(0, 8) if for 3D, \x\ <K. 

This completes the proof of energy decay for any dimension. 

Appendix 2. Exponential decay. On the other hand exponential 
decay is rooted in Huyghens' principle and cannot be proved so 
simply. One method of proving it involves the following lemma which 
describes the breaking up of the solution and depends on the prin­
ciple. 

LEMMA. Suppose u satisfies the Cauchy boundary value problem for 
' ^ 0 . The support of (B is k and of the data 3k. Then, for t>T>3k, 
u = UB-{-UFwhere 

(a) UF is a free space solution that vanishes f or \x\ <t — T—k, 
5 See E. Noether [24], for a related invariance principle. 
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(b) UB satisfies the original Cauchy boundary value problem for t^T 
+2k with data of support 3k for t = T+2k. 

To get exponential decay we now suppose that there exists a rate 
of decay, i.e., for any solution of initial support 3k, E(t, 3D) <f(t)E(t> 8) 
for £> the sphere | x | <3k, and lim^oo/(0 =0 . Let E(t, S) = l. Then 
for uBa.tt= T, £( / , 8) <ƒ(*). 

Using some domain of dependence arguments and Schwarz' in­
equality one finds in fact a constant a such that for uB a t / = T+2k, 
E(t,S)<af(t). 

Next, start with uB a t t = T+2k and move forward another time 
step. Perform the same break up into let us say u2By U2F with uB 

= u2B+u2F. Then by the rate of decay at time 2T+4k the solution 
uts will have E(t, 8) <a2f(t). 

Continuing, we eventually have near the body u = UNB where UNB 
has energy less than (af(T))N = exp Nlog af(T) for t>N(T+2k). By 
choosing TTarge enough log af(T) < 0 and we have the energy of u in 
| x\ <3k for t>N(T+2k)+2k equal to the energy in uNB where N is 
the largest integer such that N(T+2k)^t. Thus N~t/T+2k and 
hence the energy is decaying exponentially. 

We prove the lemma for u = 0 on (B and uC.Cw. We choose uB to 
satisfy (1) in 8 for t^ T and uB = u, UBt — u% for \x\ ^fe, t^T and 
UB — UBt — Q for | x | safe, t=T. The data for uB should really be 
smoothed at | x\ =k but we shall ignore this fractional correction. 

f=T+2k 
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Then UF = U—-UB is chosen to be a free space solution for t*z T with 
zero data for | x| <k. For t< T, UF is set equal to u. Looking at Figure 
2, one sees that the whole characteristic cone dropped backward from 
XQ lies in a region where UF is a smooth solution of [Ju = 0. Hence we 
can apply the Riemann function to find that UF(X$, t0) depends only 
on the initial data of u outside the support 3k. Hence UF{X^ to) = 0 
which gives (a). Part (b) follows by noting that in the region where 
WF = 0on(Bwe will haveUB — U — UF — U^O. 
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