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Let H? denote the usual Hardy class of functions holomorphic in
the unit disk. Let M denote a closed, invariant subspace of H2. The
theory of such subspaces is well known; every such M has the form
M =¢H?, where ¢ EH? is an inner function, ¢ = BsA, with
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where {a,} is a Blaschke sequence (@,/|a,| =1 if a,=0), 7, is a finite,
positive, continuous, singular measure, and 7, =0, Zr,,< o,

Less is known about the “star-invariant” subspaces M+t =H?S M.
In this announcement, we outline some results we have obtained
recently concerning the subspace M~. Full details and proofs will
appear elsewhere.

1. A unitary operator. In our first theorem, we represent M+ uni-
tarily as the sum of the spaces L2(dgp), L?(ds,) and L%(doa). Here
op is the measure on the positive integers which assigns a mass
1—|a| to the integer k; a4 is the measure on [0, o ] which is 7
times Lebesgue measure on the interval [t—1, k]; and ¢, is the mea-
sure associated with s above.

In the special case ¢ = B, our unitary operator Vig: L2(dog)— (BH?)*
is given by

VB({cn})(z) = D> (14 [ @y |)1/2B,.(z)(1 — @2)"1(1 — [ a,.]).
n=1
Here B, is the partial product of B with zeros a1, - * +, @n-1. The fact
that Vjp is unitary is a consequence of the simple and well-known
fact that the functions %,(z) = (1 —|a.|2)Y2B.(z)/(1 —d.z) form an
orthonormal basis of (BH?)+L.
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If ¢ =A, Va:L2(dos)—(AH?)L is defined by

(Vo) (2) = fwc(k)\/ZAx(z)(l — e+ =14 ()

where
N ¢+ 3 eiON+L L g
M(&) = exp {— > — = Nyt }

j=1 ei91‘ — 3 ei9N+1 — 3z

and N is the integral part of N\. If ,=0, »##1 and 6,=0, V, is the
unitary operator defined by Sarason, in [5].
Finally, if ¢ =s, we set

N it 4
s(z) = exp {——f Z“’ :dag(O)}
o _

and let V,:L2(do,)—(sH?)L be defined by

2w

(Vae(N)) (2) = f cM\)V25\(2) (1 — e=™2)~1da,(N).

0
Our three special cases may now be combined in
THEOREM 1. The operator

V:L*dop) X L*dos) X L¥doas) — (BsAH?)L
defined by
V(cB, csyca) = Vieep + BVics + BsVaca
is an isometry onto (BsAH?)L.

2. The restricted shift. In this section we consider the restricted
shift operator T on (¢pH?)*, defined by

If = Pof  fE (eH)*

where P is the projection onto (pH?)L. We want to find the form of
the operator V*T'V, unitarily equivalent to 7" under V.

Again we begin with the special cases ¢ =B, s, A. We define K,
K, and K, as the integral operators on L?(dos), L%*(ds,) and L2(doa)
given by

n

Kge(n) = 2 ¢(§)Ba(0)/Bi0)1 + | a;]) | a;]2(1 — | a;)

j=1

for ¢ =B and by
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A

K = 2 [ c0n0)/8u0)dos

0

for ¢ =s, A. We define multiplication operators Mp, M, and M, by

(M c) (1) = anc(n) (Mc)(\) = ePc(N)
and

(Msc)(N) = e®¥+¢(A) on N S A< N+ 1.
Our result for the special cases ¢ =B, s, A is that

VaTVe= (I — KMy = A,

Combining these results, we have

THEOREM 2. V*T'V is an operator A on L*(dog) X L2(do,) X L2(da,)
given by

A(ca, ¢, ca)=(Apcs, Ascetap(cs)ks, Ascatar(cs)s(0)katoas(cs)ka)

where kg is VI of the projection of 1 on (pH?) L for p=s, A, and ag, a,
are functionals.

3. Applications. Theorem 2 has applications to spectral properties
of certain functions of T, i.e. to operators T, defined by

T.f = Puf f&E ML
In fact, V*TV is the sum of a multiplication operator M:
M (ca, csyca) = (Mpep, Mocoy, M acs)
and an operator K which is easily seen to be of Hilbert-Schmidt class:
K(cg, ¢s, ca)=(Kpgcp, Kscs+ap(cn)ks, Kacatap(ca)s(0)katas(cs)ka).

Thus, if # is continuous in |z| <1, Tu=u(M)+K’, where K’ is com-
pact. From this it is easy to determine the spectrum of T (cf.
Moeller [4]) and of certain functions of T (cf. Foiag-Mlak [3]).
Certain other facts about I are consequences of Theorem 2, for
example

THEOREM 3. If u is continuous in |z| <1, then T\ is compact if and
only if u=0 on supp oM {|z| =1}.

Here supp ¢ denotes the closure of the union of the set of zeros of B,
the support of o, and the numbers e®, j=1,2, - - -,
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THEOREM 4. If 2<p< « and u is a trigonometric polynomial, then
Tu&c, if and only if

(1) #=0 on supp sA, and

i) {u(a)} e

In addition, Theorems 1 and 2 have applications to a problem we
studied in [1] and to give the following affirmative answer to a ques-
tion raised in [2] by Douglas, Shapiro and Shields.

THEOREM 5. Let Y denove the shift on all of H?:
Yi=12  f&E H2

Then, if ¢ is any inner function not of the form ¢ = e, the set { Y*t]/},
for Y a divisor of ¢ (Y #¢), spans (pH?) .

We close by noting that some close analogs to Theorems 1 and 2
above were discovered independently by T. L. Kriete, III.
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