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Let f(X) be a continuous function in Rn. The spherical means, 
SM, of ƒ is defined as follows: 

SM[/; X, p] = co/ ƒ f(X + pa)dœa 

where X = (x, x2, xz, • • • , xn) is the center of the sphere of radius p. 
a denotes a unit vector. When p =x , we write SM [ƒ; X, x] =SM*/ . 
The main purpose of this paper is to derive an expression for a func­
t ion / (X) , I G i ? + (the open half-space with x > 0), in terms of SM *ƒ. 
For (X, 0GQ+ (\t\ <x9 — oo < x ' < oo, #' = (#2, x3, • • • , Xn), (x, oc') 
£ J R + , n odd ^ 3 ) we define the paraboloidal means, PM, of ƒ as 
follows: 

PM[/ ; X, *] = G>nU* + O' n ƒ " ^ ƒ ƒ(?, *' + *«)#*" dcoa 

where b = (x-t)/2, Y= (y,y')y R= [(x+t)(2y-x+t)]li\ 
A function ƒ(X) is said to belong to the class C€ in i£+, if ƒ is con­

tinuous in Rn
+ and f(X) = 0 ( | X | u—^*>/*), 0 < € < 1 , for large | X | . 

We observe that PM [ƒ; X, /] exists, if / G C e . I t is easily verified that 
if / G C € , then SM*/£C € . The well-known identity on iterated spheri­
cal means by John and Asgeiersson [3] states 

ƒ
i /» /» r+8 /• 

duk I F(rZ + sr))do>n = 2con_x I Jrdr I F(rt)dœt, 
Z J V J I r-81 J ? 

where J = [((r+s)2-T2)(r2-(r-~s)2)Yn~z^2(2rs)2~n. 
THEOREM. Let fECe in R\ (n odd^3), and let W(X, t) 

= (tf+/)n~2PM[SM*/; X, / ] . Then the following identity holds for 

(n-3) /2 

(2) /SM[/; X, t] = MiPDo PF(X, *) + Jf, Z 0*#1* SM[/; X, / ] , 
*=1 

^4ikf5 Subject Classifications. Primary 3506; Secondary 3579. 
Key Words and Phrases. Spherical means, paraboloidal means, John-Asgeiersson 

identity, iterated spherical means, characteristics, Darboux equation. 

626 



A FUNCTION IN TERMS OF ITS SPHERICAL MEANS 627 

where 

M 1 = ( ~ l ) ^ - 1 ) / 2 r - 1 ( ^ ~ 2 ) , D = xd/dt+td/dx, 

Do^ix+ty'D, M 2 = ~ r - 1 ( ^ ~ 2 ) 2 ^ - 1 1 ) / 2 r ( ^ + l ) , * = ( » - 3 ) / 2 , 

fl<=r(*+<)[2*-1r(i)r(*-f+2)]-1, z>i=z>(*+o-x. 
(The lengthy proof of the theorem which makes use of (1) will be 
submitted elsewhere.) 

From (2) it follows that 

(3) f(X) = Mzx^[D2D7ZW{Xy OJI-O, 

where Mz = M1[l-M,Y.tT/2 a$(i+2)Yl for n>3, A f 8 = - 1 for 
w = 3. (3) is an expression for f(X)> XGJ?+, in terms of the parabo-
loidal means of SM*/. 

LEMMA. Suppose / E C « and x df/dxE:Ct. Let W0[f; X, t] 
= (x+t)n~2PM [ƒ; X, / ] . Then we have 

(4) DWo[f; x>t] = - ^o[5/; X, *], îe;Aerc Ô = (d/ds)*. 

PROOF. I t is easily seen that DR = yRv, DRn~zf{y1 x'+Ra) 
= d/dy(yRn~df)—Rn~3d/dy(yf). Integrate this expression with respect 
to y to complete the proof. 

Applying (4) to (3) and letting JXX)=SM*/, we obtain 

f(X) = - (lirx)-1 \ dy \ ô2J(y, x' + R0a)dœa for n = 3, 
J x/2 J a 

n—l f* oo • • © • 

/ (X) = Mso)n-iX
 n ^2/bi \ dy I Rn

0
 b%J(y, xfR0a)dœa for n > 3, 

where -Ro = [x(2;y —x)]1/2, the constants &,- are the coefficients in the 
expansion of DD\-zg(X), gECn~2. 

REMARK. I t follows from (2) that if we can find ƒ (X) which satisfies 
the equation SM*/ = J(X) for a given function / , then we will have 
a representation in Q+ for the even-solutions of the Darboux equation 
Vtt + (n-l)/tVt-AV = 0 in terms of J(X) = V(X,±x) (that is, if the 
equation SM*/ = / can be inverted, then we have an expression 
for the even-solutions of the Darboux equation in Q+ in terms 
of prescribed values on the characteristics C+ (x = t, x>0) and 
C_ (x= -t, x>0)). The problem of inverting SM*/ = J(X) in R* was 
studied by Chen [ l ] , [2]. I t was shown in [4] that inverting the 
equation SM [ƒ; X, | X\ ] = J(X) leads to a representation of the even-
solutions of the Darboux equation in the exterior of the characteristic 
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cones Co (J= ± | X\, X £ i ? n , n oddj^3) in terms of prescribed values 
on Co. 
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