BAER SUBPLANES AND BLOCKING SETS
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A blocking set S in a projective plane 7 is a subset of the points of
7 such that every line of 7w contains at least one point of .S and at
least one point which is not in .S. Denoting the number of points in
S by | S| our main result, obtained by purely combinatorial means,
is the following: If 7 is finite of square order, say m? then [ SI =m2+m
+1 and if ISI =m?-+m-+1 then the points of S are the points of a
subplane of m of order m (a Baer subplane). In this connection we
first of all prove the following

THEOREM. Baer subplanes form blocking sets.

PRrROOF. Suppose 7 is a plane of order m2 which contains a subplane
S of order m. Since any line of 7 contains at most m+1 points of S
we have that every line of 7 contains at least one point which is not
in S. Let [ be any line of 7 and P be any point of / which is not in S.
Then there is at most one line of S through P, S being a subplane.
Also since any two points of 7 are connected by a unique line, the
m2-+m -1 points of S are contained in the m2+1 lines of 7w through
P. 1f I contained no point of S, the lines of = through P would ac-
count for at most (m—+1)+(m2—1)-1=m?+m points of S. Thus ]
must contain at least one point of S establishing our theorem.

We now proceed to the main result. = denotes a plane of order »
and S is a blocking set in 7. S—I denotes all those points P such
that P is contained in S but not in /, and | S—!I| means the number
of such points P; similarly for I—S, |I—5].

LEMMA 1. No line of m contains more than | S| —n points of S.

ProoF. Let I be any line of w and suppose ! contains exactly ¢ points
of S. Since S is a blocking set there is at least one point R in /—S.
There are # lines of 7 through R besides /, each containing at least one
point of S. Thus always | S| Z¢+n.

LEMMA 2. Let a objects be packed into b boxes such that each box
contains at least one object, with b =a <2b. Define a function f on the
objects X as follows:
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F(X) =1 4f the box containing X contains other objects,
f(X)=0 otherwise.

Then for any such packing P, we have
A(P) = 22 f(X) £ 2(a — b),

the summation being over all objects X.

Proor. It can be seen that if some box contains more than two
objects, for some packing P, there is a packing P’ such that 4 (P’)
> A(P). Hence A(P) attains its maximum value when each box
contains no more than two objects, and, in this case, 4 (P) =2(a —b).

From now on we assume that # is a square, n =m?, say.

LEMMA 3. Suppose | S| =m?+m—+1. Let some line | of  contain
exactly k points of S. Let B denote those lines of w passing through points
of 1—S and containing at least two points of S—I. Let I denote the set
of incidences of points of S—1 with lines of B. Then | I | S2(m+1—k)
m2+1—k.

Proor. For each point P in [—.S the m2-+m-+1—k points of S—I
are packed into m? lines through P. Hence, by Lemma 2 these
lines through P yield at most 2[(m?+4m-+1—k) —m?] incidences in
I. Thus, since |I—S| =m2+1—k, we have

| 1] < 2m*+1—EB)(m + 1 — &)

Lemma 4. If |S| =m24-m-+1, some line of ™ contains precisely
m-+1 points of S.

Proor. Let some line ! of 7 contain precisely k points of S where
k is the maximum number of points of .S on any line of . Clearly
k=2 and, by Lemma 1, k=<m-1. Let B, I be as in Lemma 3, and P
any point of S—I. There remain m2+m —k points of S—/ and the &
lines of = which connect P to points of SN/ account for at most
k(k—2) of them. Thus there are at least m2+m —k—k(k—2) points
of S—1 different from P and also incident with lines of B through P.
If there are b lines of B through P we must have b(k—1) = [m2+m —k
—k(k—2)]. Thus the lines of B through P yield at least b incidences
in I, where b= (m+1—k)(m+k)(k—1)-L. Summing over all the
points of S—/ such as P we obtain II[ = (m?*+m—+1—Ek)b. Thus,
from Lemma 3, we must have

2im*+1—km+1—Fk) = m*+m-+1— k)b
If weassumek<m-+1wehave2(k—1)(m?+1—k)= (m*+m-+1—k)
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(m+k). Now, k=m=2(k—1)<2k=(m+k) and m2+1—k<m?+m
+1—k, that is, the supposition £k <m+1 is contradictory. Thus, from
Lemma 1, k=m+1, and some line of 7 contains precisely m-4-1
points of S.

TraEOREM 1. If ISI =m2+m-+1, then the points of S are the poinis
of a Baer subplane of .

Proor. By Lemma 4 some line / of = contains precisely m 41 points
of S. Since S is a blocking set, we have that if U and V are any two
distinct points of S—I the line UV of # must meet / in a point of
SN\ Thus for any point P of S—I the (m-+1) lines of = connecting
P to the m+1 points of SN\ account for all the m? points of S—/,
and, using Lemma 1, each such line contains precisely w41 points
of S. Hence if we define a structure 7’ such that the points of #’
are the points of S, the lines of 7’ are those lines of 7 containing at
least two points of S, and incidence in 7’ is given by incidence in =,
it can be seen that 7’ is a subplane of , and 7’ has order .

THEOREM 2. | S| Zm?+m-+1.

Suppose | S| =m2+m+1—¢, t>0. By Lemma 1 no line of = con-
tains more than m-+1—1 points of S. Let L be any set of ¢ points of
« none of which is in .S and such that the points of S’ do not form
the points of a Baer subplane of # where S'=SUL. Then S’ is a
blocking set since no line of 7 contains more than (m-+1—¢) ¢ points
of §’. Thus we would have a blocking set S’ with (S") =m?+m-1;
by the condition on L this contradicts Theorem 1.

ReMARK. The author has since proved that ‘S] =n+nt241 for
« of order %, n arbitrary. This result and some corollaries will be
discussed elsewhere.
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