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torsion coefficients. Two applications of these inequalities are made. 
The first is to the f unction f A * X—>R where A £jRn+1, X is a compact 
^-manifold imbedded in JRW+1, and /^ (x ) = |x~^4 | . The second ap­
plies the analysis of this distance function to prove that a Stein mani­
fold has no integral homology past the middle dimension. This in 
turn yields the Lefschetz theorem relating the cohomology of a com­
pact complex subvariety of complex projective space with that of its 
intersection with a complex hypersurface. 

HAROLD I. LEVINE 

Foundations of constructive analysis by Errett Bishop. McGraw-
Hill, New York, 1967. xiii + 370 pp. $12.00. 

For, compared with the immense expanse of modern mathe­
matics, what would the wretched remnants mean, the few isolated 
results, incomplete and unrelated, that the intuitionists have 
obtained. . . (Hilbert, 1927J1 

While in a few cases one has succeeded in replacing certain 
intuitionistically void proofs by constructive ones, for the majority 
this has not been achieved nor is there a prospect of achieving it. . . 

(Fraenkel & Bar-Hillel, 1958)2 

L'école intuitionniste, dont le souvenir n'est sans doute destiné 
a subsister qu'à titre de curiosité historique. . . (Bourbaki, I960)3 

Almost every conceivable type of resistance has been offered to 
a straightforward realistic treatment of mathematics. . . . I t is 
time to make the at tempt . (Bishop, 1967)4 

Bishop's at tempt has succeeded. Within a constructive framework 
intimately related to Brouwer's intuitionism—though with important 
differences—he has developed a substantial portion of abstract 
analysis, thereby arithmetizing it; and, moreover, he has done it in 
such a way as to establish the general feasibility and desirability of 
his constructivist program. He is not joking when he suggests that 
classical mathematics, as presently practiced, will probably cease to 
exist as an independent discipline once the implications and advan­
tages of the constructivist program are realized. After more than two 

1 The foundations of mathematics. All quotes from Hilbert, Kolmogorov, Skolem, 
and Weyl are from the translations in J . van Heijenoort's From Frege to Godel, a 
source book in mathematical logic, 1879-1931, Harvard Univ. Press, Cambridge, Mass., 
1967. 

2 Foundations of set theory, North-Holland, Amsterdam. 
3 Éléments d'histoire des mathématiques, Hermann, Paris. 
4 From the first chapter of the book under review. 
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years of grappling with this mathematics, comparing it with the 
classical system, and looking back into the historical origins of each, 
I fully agree with this prediction. 

Bishop's program is designed to study that same underlying math­
ematics that all of us look at one way or another, but which most of 
us have seen only from within the classical system. On the one hand, 
this program is firmly attached to the positive integers in a way that 
gives a natural concrete meaning to its results; on the other hand, it 
is expressed in terms of a sharpened, but completely general, version 
of real Cantorian set theory, and this makes it very attractive and 
familiar to the classical mathematician. 

Still, much of this mathematics appears to contradict some of our 
basic assumptions about the nature of mathematics. So what shall 
we make of it? Before I try to answer this question—at some length— 
I will first discharge my basic service as reviewer by describing the 
content of Bishop's book, as if the reader were already somewhat 
familiar with the constructive point of view. I hope by doing this to 
convey some of the flavor of the mathematics and lend substance to 
the more general discussion that will follow. 

The review. This book is a course in abstract analysis, starting 
from first principles, "the primitive concept of the unit, the concept 
of adjoining a unit, and the process of mathematical induction," and 
reaching in various directions as far as the Chacon-Ornstein ergodic 
theorem, Fourier analysis on groups, and Gelfand's theory of the 
spectrum. Besides the first chapter, which explains the constructivist 
program and presents Brouwer's famous critique of the deficiencies 
in meaning of classical mathematics, the most important chapters 
are those on metric spaces (completeness, compactness, locally com­
pact spaces), measure (measures as functionals, measure of sets, 
measures on R, approximation by compact sets), and normed linear 
spaces (Lp spaces, extension of linear functionals, Hubert space and 
the spectral theorem, locally convex spaces, extreme points). 

There are three supporting chapters: a thorough treatment of 
calculus and the real number system, the basics of complex analysis 
(Cauchy's formula, estimates of size and zeroes of analytic functions, 
Riemann mapping), and a short excursion into set theory, mainly to 
introduce Borel sets and to formulate an affirmative notion of com­
plementation needed for a good measure theory. 

Real numbers are defined in terms of successive rational approxi­
mations xn to within \/n (i.e. a real number is a sequence x = (xn) of 
rationals such that \xn— xm\ S^/n + \/m), and two such are defined 
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to be equal if their termwise differences are at most 2/n. A real num­
ber is positive if, for some n, xn>l/n and nonnegative if, for all n, 
xn è — 1/w. One could also make a definition of real numbers in terms 
of Dedekind cuts or arbitrary Cauchy sequences of rationals. Clas­
sically this is more elegant, but constructively it is less elegant. (Con­
structively, a Cauchy sequence of rationals is a sequence (xn) of 
rationals and a sequence (Nk) of integers such that \xn— xm\ ^1/fe 
for n, m^Nk.) 

Of the remaining chapters, one is a fairly standard treatment of 
Lebesgue integration (abstract measure spaces, convergence the­
orems), and this provides a natural setting for the study of the classi­
cal discontinuous functions. Three chapters are somewhat more 
specialized: locally compact Abelian groups—this is quite elegant 
(Haar integral, convolution, Fourier inversion, and Pontryagin 
duality), commutative Banach algebras (according to the author, "the 
only instance in this book of a classical theory whose constructive 
version seems forced and unnatural"), and limit operations in measure 
theory (containing a new general ergodic theorem, in terms of up-
crossing inequalities, which yields constructive versions of Doob's 
martingale theorem and Lebesgue's theorem that a function of 
bounded variation has a derivative almost everywhere). 

Finally, there are two appendices. One is a philosophical addendum 
on the role of contradiction and on the computational meaning of 
the mathematics of the book. The latter subject is pursued much 
further in Bishop's recent essay Mathematics as a numerical language.6 

The other appendix is a brief defense of the author's nearly exclu­
sive restriction to metric spaces and his free use of separability 
hypotheses. His conclusion is that, at least for the parts of analysis 
treated in his book, this is the right setting. There are no construc­
tively defined metric spaces which are known to be nonseparable and, 
indeed, all the spaces which arise naturally are separable. (The 
metric induced classically by the supnorm on l^ is not constructively 
everywhere well defined!) Although the concept of a uniform space, 
defined by a set of pseudometrics, would appear promising, Bishop 
finds that even those uniform structures naturally associated with 
important locally convex spaces are not too significant construc­
tively. For the dual of a separable Banach space a "double-norm" 
works better; for spaces of distributions there are other considera­
tions. 

6 Proceedings of a Symposium on Intuitionism and Proof Theory, North-Holland, 
Amsterdam (to appear). 
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• 
Now I would like to use Bishop's work as a base for comparing 

classical and constructive mathematics. These systems can be com­
pared in at least two different ways, depending on whether one's 
chief concern is to constructivize classical mathematics or, rather, to 
develop, on its own terms, a completely constructive mathematics. 
Bishop's program, like Brouwer's (and before that, Kronecker's) is 
the latter. But his approach, as reflected in his book, has been to base 
his work initially on the mathematics that now exists: to analyze 
classical mathematics from the constructive standpoint and then to 
use the results as a guide for further development. It is precisely this 
att i tude that has enabled Bishop to demonstrate to the classical 
mathematician what the intuitionists (for whatever reasons) did not: 
that to replace the classical system by the constructive one does not 
in any way mutilate the great classical theories of mathematics. Not 
at all. If anything, it strengthens them, and shows them, in a truer 
light, to be far grander than we had known. Read Weil's description 
of Kronecker's constructivist program in his essay, Number-theory 
and algebraic geometry.* 

He was, in fact, at tempting to describe and to initiate a new 
branch of mathematics, which would contain both number-theory 
and algebraic geometry as special cases. This grandiose conception 
has been allowed to fade out of sight. . . 

At any rate, for the purposes of this discussion it will be useful to 
compare classical and constructive mathematics in both of the ways 
mentioned above. 

Constructivizing classical mathematics. Concerning the first way, 
Bishop writes in his first chapter, A constructivist manifesto, 

The extent to which good constructive substitutes exist for the 
theorems of classical mathematics can be regarded as a demonstra­
tion that classical mathematics has a substantial underpinning of 
constructive t ruth . 

This directly contradicts certain beliefs of Hubert (and others) 
which, in reaction to Brouwer's critique, led to the modern approach 
of systematically suppressing constructive considerations. 

The theorems of the theory of functions, such as the theory of 
conformai mapping and the fundamental theorems in the theory of 
partial differential equations or of Fourier series—to single out 
only a few examples from our science—are merely ideal proposi-

6 Proceedings of the 1950 International Congress of Mathematicians. 
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tions in my sense and require the logical c-axiom7 for their de­
velopment. (Hubert, 1927)1 

The classical foundations of calculus, all the more the modern 
theory of real functions, including the Lebesgue integral, clearly 
become meaningless in this light. (Fraenkel & Bar-Hillel, 1958)2 

Fortunately these pessimistic views have now been shown to be 
totally wrong. 

From the standpoint of constructivizing classical mathematics, one 
naturally seeks the strongest and most useful versions of classical 
theorems, definitions, and theories. In this spirit, purely negativistic 
concepts should be kept to an absolute minimum, if not completely 
eliminated.8 For instance, to show that two constructively defined 
real numbers are not equal one must produce a positive integer k 
such that the distance between them is at least 1/fe. In the same way, 
to prove that a set is nonvoid one must construct an element of it. 

There is no fixed general method for determining good constructive 
substitutes for classical theorems, but the following examples give 
an indication of what is involved. 

(i) Consider first the basic result in the theory of commutative 
Banach algebras that, in an algebra A with unit, any finite number 
of elements whose Gelfand transforms have no common zero on the 
spectrum generate the unit ideal. We seek a constructive interpreta­
tion of the hypotheses with the widest useful application and the 
strongest conclusion. We should not choose a version which assumes 
the compactness of the spectrum for, constructively, this is not al­
ways the case. 

Bishop's method is to first construct a certain sequence Sm of 
compact subsets of the dual space A * whose intersection is the spec­
trum. He then expresses the hypotheses of the theorem by considering 
elements ai, • • • , an in A, and positive integers k and ra, such that, 
on 5m , | #i| + • • • +1 an\ ^ 1/k. (This is a constructively usable form 
of the no common zero condition. One can always check that either 
it holds or else one can construct a point x in Sm for which |ai(x) | 
+ • • • + | a n ( # ) | <2/k.) Under these conditions, Bishop shows how 
to construct &i, • • • , bn in A such that l=a i&i+ • • • +anbn. Also, 

7 Hubert's device for defining objects whose existence is deduced only by means 
of excluded middle. 

8 Mainly by finding stronger affirmative versions. However, in Brouwer's intui-
tionistic system pure negation plays a larger role. 
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bounds for the norms of &i, • • • , bn can be explicitly determined from 
the initial data. 

In general, the explicit way constructed objects can be shown to 
depend—or not depend—on various portions of the initial data may 
constitute, even from a completely classical standpoint, a useful 
strengthening of the theorem which asserts the existence of these 
objects. An outstanding case of this is the recent work of A. Baker9 

in the theory of algebraic numbers. 
(ii) When a classical assertion of convergence is not constructively 

valid, one may be led to study more carefully the behaviour of the 
approximating sequence. (Just as we do classically with Fourier 
series.) This can yield results which are classically substantially 
stronger than mere convergence. For instance, in studying Birkhoff's 
ergodic theorem, Bishop found that although the sequence of aver­
ages need not converge anywhere constructively, it does however 
obey certain upcrossing inequalities (a notion introduced by Doob 
for studying martingales) and, classically, this is more than conver­
gence a.e. 

(iii) The classical assertion that a uniformly continuous function 
on [0, 1 ] attains its maximum at some point is not valid construc­
tively. But there is a useful constructive substitute, for the classical 
proof does construct points x& where the value of the function is 
within 1/k of being an upper bound. Therefore, the supnorm is always 
constructively well-defined. Moreover, if it is a matter of actually 
determining local maxima as critical points of a smooth mapping, 
this too can be achieved constructively under suitable transversality 
assumptions. 

(iv) (Noted in passing.) Of three classically equivalent formula­
tions of the compactness of a metric space we find that, construc­
tively, one does not apply to [0, l ] (Bolzano-Weierstrass), another is 
apparently unprovable for [0, l ] (Heine-Borel-Lebesgue),10 and the 
third, as was shown by Brouwer, is excellent (complete and totally-
bounded.) 

9 Linear forms in the logarithms of algebraic numbers. I, I I , I I I , IV, Mathematika 
13 (1966), 204-216; ibid. 14 (1967), 102-107; ibid. 14 (1967), 220-228; 15 (1968), 
204-216. 

10 Nevertheless there are good reasons why, for each specific open cover of [0, l ] , 
we should expect to quite easily determine a finite subcover. In Brouwer's intuitionism 
this can be made into a theorem about the processes he is describing. At this level 
Bishop is describing something different, and in his program the above observation 
has a definitely extramathematical status. Still, it finds expression within the system 
as a constructively valid theorem about a formalization of a portion of constructive 
mathematics. 
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(v) Classically, every set has an underlying discrete structure, but 
constructively the situation is very different. Every set is still the 
union of its singleton subsets, but this union is not, in general, con­
structively disjoint. For the rationals it is and for the reals it is not. 
In fact, constructively, there is no way of decomposing the real line 
into any disjoint union of two or more nonvoid subsets. Nevertheless, 
most of the interesting classical decompositions of the line (e.g. ra­
tional-irrational or positive-negative-zero) are still available con­
structively. However, the union of the subsets is no longer the whole 
line but only a certain dense subset: generally of measure one and 
frequently the complement of a countable or even finite set. 

(vi) In the theory of normed linear spaces, giving a bounded linear 
functional constructively does not necessarily entail having any 
method for computing its norm. Nevertheless, for separable spaces, 
the constructively normable linear functionals are dense with respect 
to a natural metric on the dual space (agreeing with the weak topol­
ogy on bounded subsets). Also, the strong unit ball (i.e. linear func­
tionals bounded by 1 on the unit sphere) is constructively compact 
in this metric. These results suffice for most applications. For in­
stance, the duality between Lp and Lq carries through in a strong 
form, with the modification that Lq corresponds to the set of norm-
able elements of the dual of Lp. One can also show that every linear 
functional on the dual of a separable Banach space which is con­
tinuous on the strong unit ball (in the "weak" metric) corresponds, 
constructively, to evaluation at a point of the space. 

All these results rely on a good constructive substitute for the 
Hahn-Banach theorem. Besides requiring separability, one must 
include in the hypotheses the purely constructive restriction that the 
null space of the linear functional defined on the subspace be located 
in the big space (i.e. that the distance to it be constructively every­
where well defined). Under these conditions, for any positive integer 
k, one can construct a normable linear extension, with an increase in 
norm of at most 1/k. The located subspaces most readily at hand are 
the finite-dimensional ones and, thus, many applications of Hahn-
Banach are combined with an approximation of a subspace by finite-
dimensional ones. A finite-dimensional space must be given with a 
definite basis. I t is not good enough to construct finitely many 
elements which span. 

We could go on and give more examples illustrating other kinds of 
phenomena that have to be taken into account when constructivizing 
portions of classical mathematics. In Bishop's book they fit together 
into a completely coherent theory. This theory now provides an 
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excellent basis for investigating constructively other fields of analysis, 
such as distribution theory, partial differential equations, dynamical 
systems, and differential topology. Even on the level of the book 
there remain many interesting areas of investigation. 

The strictly constructive standpoint. Now we will examine the 
classical and constructive systems from a strictly constructive point 
of view. Here we may ask how accurately the classical system ex­
presses the content and meaning of constructive mathematics; also, 
whether it is necessary or particularly useful for discovering con­
structive theories, or for verifying constructive assertions. 

Of course, Bishop's work demonstrates that classical mathematics 
is usable, a t least as an initial guide, in the development of construc­
tive mathematics. But this same work, and, above all, Brouwer's, 
show also that its guidance is too often unreliable, distorting, and 
misleading. Indeed, this should come as no surprise if we recall that 
Hubert 's formalization of mathematics was a deliberate at tempt to 
"save" classical mathematics from Brouwer's critique by what Weyl 
called "a radical reinterpretation of its meaning." Therefore, even 
though classical mathematics does yield constructive results, and 
even though we may sometimes uncover patterns in its "reinterpreta­
tion" of the meaning of mathematics, from the constructive stand­
point we are eventually reduced to asking only (i) is the classical 
system really necessary for getting constructive results and (ii) in 
what limited areas is it definitely reliable? 

Concerning (i), Bishop writes, in his appendix on aspects of con­
structive truth, 

Hilbert's implied belief that there are a significant number of 
interesting theorems whose statements (standing alone) are con­
structive but whose proofs are not constructive (or cannot easily be 
made constructive) has not been justified. In fact we do not know 
of even one such theorem.11 

For some, perhaps most, mathematicians, such considerations are 
irrelevant. Mathematics is classical mathematics. In that case, as 
Bishop writes, 

Mathematics becomes the game of sets, which is a fine game 
as far as it goes, with rules that are admirably precise. The game 

11 Looking at such proofs constructively tends to reveal more of the underlying 
structural considerations that account for the correctness of the theorem. For in­
stance, such a theorem proved classically by appealing to the Bolzano-Weiers trass 
theorem may sometimes be viewed more accurately as a consequence of the pigeon­
hole principle. 
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becomes its own justification, and the fact that it represents a 
highly idealized version of mathematical existence is universally 
ignored. 

Nevertheless, as everybody knows, the modern foundations were 
fit underneath an already existing mathematics (which continues to 
go its own way) and the formal structure was superimposed. Given 
the current admittedly unsatisfactory state of the classical founda­
tions, we might find it worthwhile to remind ourselves just what the 
formalization of mathematics was designed to accomplish and to ask 
how well it has succeeded. Does a formal model of axiomatic set 
theory really represent mathematics better than real set theory? 
Actually, from the constructive standpoint, we should rather first ask 
whether axiomatic set theory is preferable to a mathematics built 
directly on the integers. Also, we ought to remind ourselves why, after 
Brouwer's critique, the principle of excluded middle was still included 
in the formalization of mathematics. 

Skolem, in Some remarks on axiomatized set theory1 (1922), pre­
sented his famous result about countable models for set theory as a 
demonstration of the inadequacy of a formalistic or axiomatic ap­
proach to foundations.12 In that same paper he wrote, 

Set-theoreticians are usually of the opinion that the notion of 
integer should be defined and that the principle of mathematical 
induction should be proved. But it is clear that we cannot define or 
prove ad infinitum; sooner or later we come to something that is 
not further definable or provable. Our only concern, then, should 
be that the initial foundations be something immediately clear, 
natural, and not open to question. This condition is satisfied by the 
the notion of integer and by inductive inferences, but it is decidedly 
not satisfied by set-theoretic axioms of the type of Zermelo's or 
anything else of that kind ; if we were to accept the reduction of the 
former notions to the latter, the set-theoretic notions would have 
to be simpler than mathematical induction, and reasoning with 
them less open to question, but this runs entirely counter to the 
actual state of affairs. 

This is precisely the constructive atti tude. Offering a definition of 
his program, Bishop writes in Mathematics as a numerical language? 

Thus by "constructive" I shall mean a mathematics that de­
scribes or predicts the results of certain finitely performable, albeit 
hypothetical, computations within the set of integers. 

12 Because of "the fact tha t in every thoroughgoing axiomatization set-theoretic 
notions are unavoidably relative." 
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Hence, the constructivist program involves, first of all, a complete 
arithmetization of mathematics. Here it is following the path laid 
down by Descartes, Weierstrass, and others, but in the strict form 
first initiated by Kronecker in algebra. I t is really the extension of 
the Kroneckerian program to all of mathematics. Not so strangely, 
Hubert 's formalist program which, within mathematics, is the anti­
thesis of constructivism, espouses a similar sounding goal. But in 
neither case is this an expression of any love for arithmetic over, say, 
geometry. Rather, it stems from the recognition that mathematics 
has concrete meaning independent of logical considerations and that, 
moreover, for finite beings, there is an obviously intimate relation 
between meaningful assertions and finitely13 verifiable ones. We get to 
Bishop's definition of "constructive mathematics" by the extra-
mathematical observation that finitely verifiable assertions always 
reduce to the prediction of finitely performable operations among the 
integers.14 

The constructive development of mathematics. In discussing the 
descriptive basis of mathematics, in his constructivist manifesto^ Bishop 
sketches for the reader the way constructive mathematics unfolds 
from the integers, eventually encompassing the most general con­
cepts of mathematics, yet always grounded in terms of descriptions 
of abstract finitely performable operations. 

We feel about number the way Kant felt about space. . . . Al­
most equal in importance . . . are the constructions by which we 
ascend from number to the higher levels of mathematical existence. 
. . . The relations which form the point of departure are the order 
and arithmetical relations of the positive integers. From these we 
construct various rules for pairing integers with one another, for 
separating out certain integers from the rest, and for associating 
integers to one another. Rules of this sort give rise to the notions 
of sets and functions. 

A set is not an entity which has an ideal existence. . . . To de­
fine a set we prescribe, at least implicitly, what we (the construct­
ing intelligence) must do in order to construct an element of the 
set, and what we must do in order to show that two elements of the 
set are equal . . . to define a function from a set A to a set B, we 
prescribe a finite routine which leads from an element of A to an 
element of B, and show that equal elements of A give rise to equal 
elements of B. 

Building on the positive integers, weaving a web of ever more 

13 The completely redundant "finitely" is just for emphasis. 
14 However, Bishop adds, "there is no reason mathematics should not concern itself 

with finitely performable abstract operations of other kinds, in the event that such are 
ever discovered; our insistence on the primacy of the integers is not absolute."5 
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sets and more functions, we get the basic structures of mathe­
matics: the rational number system, the real number system, . . . , 
the algebraic number fields, Hubert space,. . . , and so forth. , . . 
Everything attaches itself to number, and every mathematical 
statement ultimately expresses the fact that if we perform certain 
computations within the set of positive integers, we shall get cer­
tain results. 

Mathematics takes another leap, from the entity which is 
constructed in fact to the entity whose construction is hypothetical. 
To some extent hypothetical entities are present from the start : 
whenever we assert tha t every positive integer has a certain 
property, in essense, we are considering a positive integer whose 
construction is hypothetical. But now we become bolder and con­
sider a hypothetical set, endowed with hypothetical operations 
subject to certain axioms. In this way we introduce such structures 
as topological spaces, groups, and manifolds. The motivation for 
doing this comes from the study of concretely constructed ex­
amples, and the justification comes from the possibility of applying 
the theory of the hypothetical structure to the study of more than 
one specific example . . . even the most abstract mathematical 
statement has a computational basis. 

Thus we find in the constructive framework all the basic, however 
general, objects of study of classical mathematics. But notice that in 
constructive mathematics one works, quite securely, outside any 
formal system, with a very general concept of sets. There is no worry 
about paradoxes. As Bishop puts it, "For the constructivist, con­
sistency is not a hobgoblin. It has no independent value; it is merely a 
consequence of correct thought." Indeed, we find that the so-called 
paradoxes of Cantor's theory reside, not in the concept of a set, but 
rather in the truly vague notions of "ideal" existence and identity 
which are classically attributed to the members of any set. 

Constructive mathematics is completely general in its scope, and 
yet it is commonly claimed that the opposite is true.15 Usually this 
is caused by confusing the matter of defining a set with the problem 
of constructing elements of it. A typical instance of this reads, "the 
set consisting of 5 if Fermât 's Last Theorem is true and 7 if it is false 
is not well defined, according to Brouwer." Not so. True, as it stands, 

15 This is the basis for most write-offs of constructivism, and some of Brouwer's 
earlier remarks may have unfortunately contributed to this belief. For instance, in 
Intuitionism and formalism, this Bulletin, 1913, he wrote, "the formalist introduces 
various concepts, entirely meaningless to the intuitionist, such as for instance 'the 
set whose elements are the points of space,' 'the set whose elements are the continuous 
functions of a variable' . . . and so forth." 
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this does not define an integer. But it does define a subset16 of {5, 7} 
containing at most one integer. 

Of course, classically, we are in the same kind of situation when 
we consider the set of solutions y — y{x) of a specific functional equa­
t i o n / ^ , y) = 0 without having any particular solution at hand, and 
even without knowing if there are any.17 Likewise, to define a set 
constructively means only to state precisely what must be accom­
plished in order to construct an element, and what else must be 
accomplished in order that two given elements be equal. We are not 
required, in defining a set, to have any way of constructing elements 
or any way of deciding if two elements are equal. By a way we mean 
here a finitely performable procedure. Sometimes they are at hand; 
but in other cases finding them will constitute a major mathematical 
problem. 

By contrast with the ease in defining sets constructively, it is hard 
to construct functions. The definition of a function from a set A to a 
set B must provide an explicit way of converting the construction of 
any element of A into the construction of a definite element of B. 
(This much describes the concept of an operation. To define a func­
tion we must also provide a proof that equal members of A are con­
verted into equal members of B.) We can say more. To be complete 
the definition of the function must also come with a verification that 
it is finitely performable. This verification may make use of other 
functions that have already been shown to be well defined, starting 
off, when all is spelled out, with the finiteness of the specific integers. 

As an illustration, let us consider what must be done to define 
constructively a real-valued function on the closed interval, [0, l ] , 
in terms of whatever must be done to define a function from the posi­
tive integers to the integers, i.e. in terms of sequences of integers. 
For the sake of the present discussion, let us try to be very explicit. 

I t is no restriction to consider only real numbers of the form 
x==(x(w)/2n), where (x(n)) is a constructively defined sequence of 
integers and, for each n, x(n + l) differs from 2x(n) by at most 1. The 
relation of equality x—y between reals is then expressed by the con­
dition that, for all n, | x(n) —y{n) | rg 2. The requirement that x belong 
to [0, l ] means that, for all n, — 1 Sx(n) ^ 2 n + l . Therefore, we see 
that the definition of any function ƒ : [0,1 ]—>R must supply, firstly, a 

16 Or, in Brouwer's later terminology, a "subspecies.n 

17 Compare the discussion in Poincare's essays, Mathematics and logic and The 
logic of infinity, (1905-06), in his Dernières Pensées, Dover translation, 1963. 
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finitely performable method for converting each definition of a se­
quence of integers (x(n)) that satisfies (a) for each nf | x(n+l) — 2x(n) \ 
rgl, and (b) —1 ̂ x(n) ^ 2 n + l, into the definition of another specific 
sequence of integers (ux(n)) that satisfies \ux(n + l) — 2ux(n)\ ^ 1 , 
and, secondlyy a proof that if, for all n, \x{n)—y(n)\ ^ 2 then, for all 
n, \ux(n)—Uy{n)\ ^ 2 . 

To go further and define a uniformly continuous function we would 
have to provide a modulus of continuity. This amounts to defining a 
sequence of positive integers (k(n)) and giving a proof that, for all n, 
if \x(k{n))— y(k(n))\ ^ 2 then \ux(ri)—uy(n)\ g 2 . We note in passing 
that for each specific n this will be a direct check. 

I have taken such exceptional pains to spell everything out— 
though I could have gone even further—to counter the common 
belief that constructive mathematics must be vague and imprecise, 
because it—in particular, the concept of a construction—is not 
formalized in any way. This belief is shared by the Russian school of 
constructivists, and others, who feel it is necessary to base the concept 
of a construction on that of a recursive function. (One effect of doing 
this is a radical change in the way the mathematics looks.) Sanin, in 
On the constructive interpretation of mathematical judgments1* writes 
that constructive mathematics "began to be developed successfully 
only in the middle of the 1930's after the precise mathematical con­
cept of arithmetic algorithm {computable arithmetic f unction) had been 
worked out. Only the introduction into mathematics of the precise 
notion of arithmetic algorithm created a satisfactory basis for the 
treatment of the constructive interpretation of mathematical propo­
sitions and fundamental notions of constructive mathematical 
analysis." I believe that Bishop's work effectively refutes the under­
lying assumption here. The undefined concept of a construction 
actually admits a usage no less precise and clear than the undefined 
concept of an integer. This remarkable fact can only be obscured by 
bringing in recursive functions at this level. 

Extramathematical observations. In light of the above discussion, 
it should not be a t all surprising that Brouwer, after carefully con­
sidering how the definition of a function/: [O, l]—>R could possibly 
be given, became convinced that one would always be able to ex­
tract from it a modulus of continuity. Indeed, the status of this 
observation is rather like that of Church's thesis. On the one hand, 

18 In Russian (1958). Translated in Amer. Math. Soc. Transi., (2), 23 (1963), 
109-189. 
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it is based on our possibly too limited present understanding of the 
way a precise definition can be given.19 On the other hand, it sure 
seems like a safe bet. But, for Bishop, such extramathematical ob­
servations have no proper role within the actual development of 
constructive mathematics.20 He writes of developing his program 
with an "absolute minimum of philosophical prejudice concerning the 
nature of constructive mathematics" and, whether or not this is really 
so, it expresses a pragmatic attitude which helped him to avoid a 
number of traps and is no doubt one of the keys to his success. 

Yet this is not the whole story. Extramathematical observations 
can and do have great value as, more or less tentative, guiding prin­
ciples in the development of constructive mathematics. Some of the 
most important ones, based on "counterexamples in the style of 
Brouwer," reveal the phenomena of nonconstructivity, and advise us 
not to try doing certain things constructively, e.g. defining a dis­
continuous function on the line. Others suggest that if we can prove 
constructively a certain type of result then we can in fact prove it in 
a strong form, e.g. that if we can prove (r = 0)—»(0 = 1), where r is a 
constructively defined real number, then we can actually construct 
a positive integer k and prove that \r\ >l/k. Such observations, 
based on an examination of the mathematics that has already been 
done, are of obvious importance. 

In this spirit, Bishop reviewed his own book in Mathematics as a 
numerical language^ and, guided by an important work of Gödel,21 made 
several general observations about the form of mathematical state­
ments and about the meaning of implications, P—»(?. In connection 
with this, he also undertook to reinterpret the mathematics of his 
book, in a way consonant with its meaning, within a certain formal 
system of Gödel that is designed to accomodate constructive arith­
metic and for which some of these observations reappear as construc­
tively valid metatheorems. Moreover, considerations of this sort led 
to an actual improvement of some of the mathematics of the book, 
especially in the measure theory and the treatment of Banach 
algebras. 

(This is as good a place as any to say—if it needs saying—that 
defining formal systems, constructively, and proving theorems about 

19 However, in Brouwer's scheme of things, this is already taken into account. 
20 Though such a division may ultimately be hard to maintain, it serves to give 

a definite shape and direction to Bishop's program. 
21 Über eine bisher noch nich benützte Erweiterung des fluiten Standpunktes, Dia­

lectica 12 (1958), 280-287. 
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them, constructively, is a part of constructive mathematics. This is 
so regardless of the constructive content, or lack of it, in the ideas 
which the system is designed to formalize.) 

I am now going to describe a portion of Bishop's "review." It af­
fords the classical mathematician a very nice view of an important 
part of the general structure of constructive mathematics, indepen­
dent of any classical considerations. 

Firstly, growing out of the "verifiability criterion for meaning," 
and the aim of developing a predictive mathematics, there is the 
concept of a complete mathematical statement. Such a statement 
asserts VxGS, A(x), where 5 is a constructively defined set and each 
A(x) is finitely verifiable. Included in it are the definition of 5 and a 
verification that each A (x) is verifiable. Of course, the definition of 
S and the verification of verifiability may, in turn, rely on other 
definitions, verifications, and complete statements that have already 
been made—starting from the integers and inductive inferences. All 
of these form part of the complete statement. 

One criterion for proving an existential assertion constructively, 
and a good one to bear in mind when trying to learn what is and what 
is not constructive, is that the proof, when made completely explicit, 
must supply a completion, in the sense above. For instance, the 
assertion that there exist infinitely many primes is not, as it stands, 
complete; but Euclid's proof provides a completion, asserting, and 
demonstrating, that the (n + l)st prime is no greater than one plus 
the product of the first n primes. 

Tha t each A(x) be finitely verifiable means precisely that the 
"truth value"—0 if A(x) is correct, 1 if it is not—is a constructively 
defined integer-valued function on 5. Thus Bishop writes,5 

A complete mathematical statement—that is, a theorem co-
joined with its proof and with all theorems, proofs, and definitions 
on which it depends, either directly or indirectly—asserts that a 
given constructively defined function ƒ, from a constructively de­
fined set S to the integers, vanishes identically. 

However, a mathematical statement may assert V x £ S , A(x), as 
above, without being proved. For instance, the Fermât conjecture, 
the Riemann hypothesis, and a good many other well-known conjec­
tures can all, without much difficulty, be restated in the form Vw, 
T(n)y where n ranges over the positive integers and each T(n) is 
finitely verifiable. (For the Fermât conjecture we can let T(n) be the 
assertion that for all nonzero integers a, b, c, d such that 2 <d<n and 
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| a\ +1 b\ +1 c\ <n, we have ad+bd?*cd.) Similarly, any assertion that 
a specific real number # = (xw) is nonnegative has the same form, 
V», xn^ — 1/n. We might call such assertions "predictions" and 
reserve the adjective "complete" for ones which are accompanied by 
a proof. For our aim is not just to make predictions, but to make 
correct ones. 

But the statements of mathematics are not all predictive. Not only 
are conjectural assertions of existence, by their nature, incomplete 
and nonpredictive. Even existential statements which have been 
proved constructively are not usually replaced by the completed 
version which the proof must provide. For good reason, because an 
incomplete existential theorem has a different intent from any of its 
completions. Namely, that there be, at hand, some completion of it, i.e. 
that there be available some specific construction of the kind of 
object that is asserted to exist, without bringing in the special prop­
erties of that construction. However, if no completion of a theorem 
appears to have any particular interest, this might suggest reformu­
lating the original assertion another way. 

Going further, Bishop defines an incomplete mathematical state­
ment to be any one which asserts 3yÇzT, VxÇzS, A(x, y), where S 
and T are constructively defined sets and each A(x, y) is finitely 
verifiable. To complete such a statement we must obviously con­
struct some yÇîïT and verify that V x £ 5 , A(x, y). (For instance, any 
assertion that a specific real number x^(xn) is positive has the in­
complete form, Ik, xk > 1/k. To complete it we must define a particular 
ko and verify that XkQ> 1/&0-) 

Bishop suggests that any assertion of constructive mathematics 
can be restated in this incomplete form, and this immediately raises 
the basic question of how we should so interpret an implication, 
P—»(), between incomplete statements. The correct approach appears 
to be one that is based on an interpretation invented by Gödel,21 

which Bishop calls numerical, or Gödel, implication. He finds that it 
is not only harmonious with the mathematics of his book, but in fact 
improves it. 

Gödel's interpretation is designed to be applied when each of the 
variables in the incomplete statements P and Q ranges over one of 
the following special sets: {l , • • • , n\ is a special set. The set of 
positive integers is a special set. The product of two special sets is a 
special set. Finally, the set of all constructively defined functions 
from one special set to another is again a special set. 

Tha t P and Q can always be brought into such a form depends on 
certain extramathematical considerations about the way the general 
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set of constructive mathematics is built up from these special ones.22 

At any rate, once this is arranged, if P is ly Vx, A(x, y) and Q is 
3vVu, B(u, v), then the Gödel interpretation of P—>Q is 3(z>, x) V(y} u), 
(A(x(y, u), y)—>B(u, ï)(y))), where v and x are to be constructively 
defined functions, with appropriate domain and range, and the paren­
thetical implications are to be verified in the classical manner (by 
checking each end of the arrow and comparing truth values). This is 
much more natural than it may appear at first glance, and it is worth 
trying to see why. 

Gödel's interpretation of implication has striking consequences. 
Firstly, any implication between predictions, ( Vx, A(x))—>( Vw, B(u)), 
where x and u each ranges over a special set, is to be proved by con­
structing a function x(u) and verifying that Vw, A(x(u))~->B(u). 
Taking the conclusion to be 0 = 1, we get an interpretation of nega­
tion. For (not P) is just the assertion that P—>(0 = 1). Thus, if P has 
the predictive form, Vx, A(x)> with x ranging over a special set— 
e.g. the positive integers—then the Gödel interpretation of (not P) 
takes the strongly affirmative form, 3x0, not A(xo). In other words, 
we should expect that if we can somehow negate P then we can ac­
tually produce a counterexample. For a general 3y Vx, A(x, y), with 
y and x ranging over special sets, its negation here takes the form of 
constructing an x(y) and proving V;y, not A(x(y)} y). I t is also in­
structive to compare any such incomplete statement with the Gödel 
interpretation of its double negation. All these interpretations fit 
well with the basic constructivist attitude of seeking strongly affirma­
tive versions of negativistic concepts. 

Finally, we should not forget the status of all such "guiding prin­
ciples." They are definitely extramathematical observations, tem­
poral, always subject to future modification, even rejection, when­
ever new developments should so require. 

Logic and meaning. To go further, let us first go back. Construc­
tive mathematics, beginning with Kronecker, is concerned with 
meaning. We may contrast this concern with the atti tude of certain 
logicians, as expressed by the following remarks of Bertrand Russell 
(1901). 

Thus mathematics may be defined as the subject in which we 
never know what we are talking about, nor whether what we are 
saying is true. . . . The proof that all pure mathematics, including 

22 This is discussed in Bishop's paper;5 bu t Gödel implication is applied there 
without any restriction on the domains of the variables. As Bishop himself recently 
pointed out, this is "downright wrong," for it can produce incorrect interpretations. 
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Geometry, is nothing but formal logic, is a fatal blow to the 
Kantian philosophy.23 

Nevertheless, constructive mathematics starts off with the Kan­
tian, indeed, ancient, observation that mathematics has content and 
meaning, independent of logical considerations. For instance, the 
principle of mathematical induction is correct simply by virtue of its 
meaning. For the same reason, the assertion that 0 = 1 is incorrect. 
In fact, every constructively proved theorem (i.e. every complete 
theorem) is correct precisely on account of its meaning. 

Moreover, as we have seen, the way constructive mathematics is 
directed toward predictive and descriptive assertions suggests that 
any incomplete statement should be interpreted as meaning, first of 
all, that it has a completion (gotten by actually constructing the 
kind of object that is asserted to exist). From this standpoint, a 
formally derived assertion of existence, even together with its formal 
proof, but without a construction, cannot even be regarded as an­
swering "yes" to the question of whether such an object exists. This 
is not at all to ignore the fact that such a formal proof of existence 
will, nearly always, provide a verification (i.e. a completion) of some 
other incomplete statement which is logically equivalent with the 
original one: perhaps its double negation or, in the case of an impli­
cation, its contrapositive. But, as one can see quite vividly from 
simple examples, this is a different assertion, usually with a very 
different meaning. For instance, if we regard the uniform boundedness 
principle as asserting the existence of a certain real number, an upper 
bound for the set of norms of some family of operators on a Banach 
space, then its contrapositive asserts the existence of a point in that 
space, having certain properties. 

Of course, classically, even if we recognize these differences in 
meaning, we must admit the truth of any incomplete assertion which 
is shown to be logically equivalent with some other complete (i.e. 
constructively proved) theorem. In fact, this is generally regarded as 
a very powerful nonconstructive way of correctly guessing the truth 
of existence statements, a way that enables us to concentrate on the 
pure form and structure of mathematics by separating out the fact 
of existence from the business of, somehow, actually effecting a 
construction. 

Already Kant24 (1781) had, in another context, called attention to 

23 From the essay, "Mathematics and the metaphysicians," in Mysticism and 
logic, W. W. Norton and Co., New York, 1929. 

24 Critique of pure reason, Norman Kemp Smith's translation, Macmillan, New 
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the excessive "simplemindedness" of such an approach; and the 
discovery of the paradoxes sounded louder warnings that, even in 
mathematics, there might be limits to the domain of validity of 
Aristotelian reasoning based on excluded middle. But it remained for 
Brouwer25 (1908) to show how logic and meaning were already in 
blatant contradiction in some of the basic assertions of classical 
analysis; among them, the Bolzano-Weierstrass theorem. By simply 
observing what these formally valid theorems said in certain specific 
cases, Brouwer found immediately that they could be maintained 
only at the price of drastically altering—and muddying—the bedrock 
of our mathematics, our basic concept of the positive integers. He 
showed that to accept such assertions entails, unavoidably, treating 
on a par with 1, 2, 3, • • • 26 such exotica as the truth value of any 
predictive assertion of the form, Vw, T{ri) (where n ranges over the 
real positive integers and each T(n) is really finitely verifiable).27 

To see how this bizarre and undesirable situation arises, consider 
the Bolzano-Weierstrass theorem. It says, plainly enough, that for 
each sequence (rn) of real numbers, with all 0 ^ r n ^ l , there exists a 
strictly increasing sequence (rik) of positive integers such that, for all 
k, we have 

\rnk+1 -rnh\ ^ 1/2*. 

If we now apply this to any specific nondecreasing sequence of O's 
and l 's we find immediately that the only issue is the existence of n%. 
For any such subsequence (rnk) must necessarily be constantly 0 or 
constantly 1 from the second term on, depending on whether all rn = 0 
or some rn = l. Thus the status of rn2 is quite different from that of 
r~u ?2, r%, • • • . For, though we insist that the definition of the se­
quence (rn) provide a finitely performable procedure that enables us, 
for each specific n, to compute rn — 0 or rn — 1, the term rni given by 
the Bolzano-Weierstrass theorem can, as it stands, only be described 
as the truth value of the assertion Vn, rn = 0. (Note that every pre­
dictive assertion of the form Vw, T(n) can be translated into this 

York, 1961. On p. 262 we have "For to substitute the logical possibility of the concept 
(namely, that the concept does not contradict itself) for the transcendental possibility 
of things (namely, that an object corresponds to the concept) can deceive and leave 
satisfied only the simpleminded." I thank B. Mazur for showing me this reference. 

26 De onbetrouwbaarheid der logische principes. Tijdschrift voor wijsbegeerte 2. 
26 And even much larger specific integers like 1010 tha t are constructed recursively 

in terms of the general concept of integer. 
27 The linguistic contortions of the parenthetical remark already indicate the way 

our concrete understanding of what a finite number is gets obscured. 
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form by taking rn to be the truth value of the finitely verifiable 
assertion r ( l ) A • • • AT(n).) 

Thus Brouwer showed that we must choose between our a priori 
concept of the positive integers and the free use of the principle of 
excluded middle beyond the domain of what is known to be finitely 
verifiable. Brouwer opted for the former and argued that such in­
trinsically nonconstructive assertions as the Bolzano-Weierstrass 
theorem, though formally valid, should be considered to be incorrect 
on account of their meaning. 

The reaction to Brouwer's critique. 
Brouwer's writings have revealed that it is illegitimate to use 

the principle of excluded middle in the domain of transfinite 
arguments. (Kolmogorov, 1925)28 

In any case, those logical laws tha t man has always used since 
he began to think, the very ones that Aristotle taught, do not 
hold. . . . logic alone does not suffice. The right to operate with the 
infinite can be secured only by means of the finite. (Hubert, 1925)29 

Brouwer, like everyone else, required of mathematics that its 
theorems be (in Hubert 's terminology) "real propositions,'' mean* 
ingful t ruths. But he was the first to see exactly and in full measure 
how it has in fact everywhere far exceeded the limits of contentual 
thought. . . . In the contentual considerations that are intended to 
establish the consistency of formalized mathematics Hubert fully 
respects these limits, and he does so as a matter of course; we are 
really not dealing with artificial prohibitions here by any means. 

(Weyl, 1927)30 

Brouwers observations influenced Hubert 's program of formaliza­
tion in more ways than one. The original concern of Hubert was to 
provide a secure framework for Cantorian mathematics, especially 
the theory of transfinite numbers, free from the danger of paradoxes. 
His scheme, derived from his earlier work on the relative consistency 
of geometry, was to construct, from the most primitive objects of 
thought, an accurate model of classical mathematics: one whose 
consistency would be determined by the most intuitive considera­
tions, though not necessarily while standing on one leg. But Brouwer's 
critique, of conceded validity, posed for the formalists a new question 
far more serious than that of consistency. Namely, what is the point 

On the principle of excluded middle.1 

On the infinite.1 

Comments on Hubert's second lecture on the foundations of mathematics} 
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of an accurate, even consistent, formalization of an incorrect theory? 
If we no longer discuss this point, it is not because the theory has 
meanwhile been corrected; but rather, as Weyl30 explained, because 
Hubert "saved" classical mathematics "by a radical reinterpretation 
of its meaning without reducing its inventory, namely, by formalizing 
it, thus transforming it in principle from a system of intuitive results 
into a game with formulas that proceeds according to fixed rules." 

Weyl goes on to say that this step was necessitated by "the pressure 
of circumstances"; and here we arrive at the root of the matter. The 
circumstances were that Brouwer's critique, coming on the heels of 
the still unresolved crisis of Cantor's set theory, completely under­
mined the previously unquestioned belief that the great theories of 
classical mathematics—analysis, arithmetic, algebra, geometry— 
are a true expression of some underlying real content. The nearly 
universal, though, as Bishop's work shows, completely mistaken, 
judgment was that most of the main theorems, especially in analysis, 
were, after all, "merely ideal propositions" and that to accept the 
consequences of Brouwer's observations would mean to wreck the 
great theories of mathematics and permanently cripple future devel­
opment. Also, the very limited reconstruction of these theories 
within Brouwer's own intuitionistic program31 appeared to confirm 
this judgment. 

Taking the principle of excluded middle from the mathe­
matician would be the same, say, as proscribing the telescope to 
the astronomer or to the boxer the use of his fists. To prohibit 
existence statements and the principle of excluded middle is tanta­
mount to relinquishing the science of mathematics altogether. 

(Hubert, 1927) * 

That from this point of view only a part, perhaps only a 
wretched part, of classical mathematics is tenable is a bitter but 
inevitable fact. Hilbert could not bear this mutilation. 

(Weyl, 1927)80 

As to the mutilation of mathematics of which you accuse me, 
it must be taken as an inevitable consequence of our standpoint. 

(the fictitious INT. of Heyting, 1955)82 

Moreover, if the intuitionistic attitude should oust the classical 
view it might take generations to save, and to firmly base with 
intuitionistic methods, those parts of mathematics which do not 

31 Plus its radical point of view and aspects of the way it was presented. 
32 Intuitionism, an introduction, North-Holland, Amsterdam. 
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become meaningless or false according to the new conceptions. 
(Fraenkel & Bar-Hillel, 1958)2 

Etc. etc. etc. 
So much for "the pressure of circumstances." But in a more opti­

mistic mood, Hubert saw formal mathematics as a way of reaching 
the real by passing through the ideal. That is, one may use all the 
formal machinery, in particular, nonconstructive but formally valid 
existence statements (such as the Bolzano-Weierstrass theorem), to 
prove, formally, real propositions, i.e. predictive ones. However, not 
only are such considerations largely ignored or blurred nowadays, 
but we have already quoted, and can confirm, Bishop's observation 
that in practice such proofs are already constructive or can easily be 
made so.33 Indeed, as Weyl30 pointed out, the hard part is not to find 
constructive proofs of predictive assertions which have already been 
proved classically, but rather "to fill out the theorems of classical 
mathematics" by replacing purely formal assertions of existence by 
constructions.34 

The fact is, as Bishop's book demonstrates for a sizable portion of 
analysis, that classical mathematics is full of significant constructive 
content. Furthermore, one of Bishop's main points is that, given the 
right general way of looking, and some groundwork, much of the job 
of finding it becomes routine. Of course there remain many important 
areas where no more than preliminary investigations have been 
made, e.g. the mathematics built on Hubert 's basis theorem, but 
there are so far no grounds for pessimism. The contrary is true—and 
this is certainly good news. 

• 
The moral of this story is not the relatively boring fact that the 

classical system can now be "filled out," but that it is time to turn 
back to a systematic and realistic consideration of the meaning of 

33 There are also metamathematical results along these lines going back to 
Kolmogorov,28 1925, based on comparing a formal model of a portion of constructive 
mathematics with the model of classical mathematics gotten by adding to it the 
principle of excluded middle. 

34 This raises the question of exploring the true domain of validity of the principle 
of excluded middle. There is a conjecture that by means of a metaconstruction one 
can constructivize any classical proof of an existence statement of the form VxETy, 
A(x, y) (with each A(x, y) verifiable) so long as that proof can be formalized in 
Gödel's formal constructive system with excluded middle adjoined. This is based on 
empirical observation that such classical theorems tend to admit completions and on 
Spector's important work, "Provably recursive functional of analysis," in Recursive 
function theory, Proc. Sympos. in Pure Math., vol. 5, Amer. Math. Soc , Providence, 
R. I., 1962. 
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our mathematics, and on this basis finally begin to realize the rich 
promise of a truly Kroneckerian development. By insisting36 on 
admitting the principle of excluded middle, regardless of its meaning, 
and thereby abandoning all those natural explanations and concepts 
based directly on meaning, classical mathematics took a step from 
reality, and not into paradise.36 

The successful formalization of mathematics helped keep 
mathematics on a wrong course. The fact tha t space has been 
arithmetized loses much of its significance if space, number, and 
everything else are fitted into a matrix of idealism where even the 
positive integers have an ambiguous computational existence. . . . it 
took the full flowering of formalism to kill the insight into the 
nature of mathematics which its arithmetization could have given.34 

Really, the only way the classical mathematician can judge for 
himself about the truth of what is said here is by stepping outside his 
system—this is not easy to do!—and then comparing what classical 
and constructive mathematics have to say about the phenomena and 
structure of the one underlying mathematics. I believe that by doing 
this he will discover for himself Bishop's "secret still on the point of 
being blabbed".37 

GABRIEL STOLZENBERG 

86 According to Hubert1 "No one, though he speak with tongues of angels, will 
keep people from negating arbitrary assertions, forming partial judgments, or using 
the principle of excluded middle." 

88 Thus difficulties stemming from the fictitious existence and identity classically 
attributed to the elements of any set soon forced abandoning the real Cantorian set 
theory in favor of much less natural, and still unsatisfactory, axiomatics and forma-
listics. Yet, constructively, a sharpened version of the set concept is given the freest 
play. I t is quite revealing, though beyond the scope of this exposition, to pursue 
further the contrasting classical and constructive standpoints on such topics as 
countability, uncountability, decidability, formal undecidability, consistency proofs, 
the role of formal systems, the structure of the line, Cantor's theory of ordinals and 
cardinals (constructively, the line and the plane are not equipotent—because they 
are not homeomorphic), the continuum hypothesis (constructively not valid), and 
the axiom of choice (a choice operation is always available constructively, though not 
always a choice j'unction). 

87 This is the epigraph of Bishop's book, taken from Lascelles Abercrombie's 
Emblems of love, the Bodley Head, Ltd. (John Lane), London. 


