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We will prove the following theorem : 

For each positive integer nt let 

(n y 
p(n) = {— + 1 1 + 1 if n is even, 

1\ (n + 3 \ 
- 1 ( 1 + 1 if nis odd. 

Let O be the m-dimensional complex euclidean space and PnC the 
n-dimensional complex projective space. Then every holomorphic 
mapping x:Cm-~+PnC such that # ( 0 ) omits p(n) hyperplanes in gen­
eral position must reduce to a constant. 

Note that p(l) = 3 and P\C is just the Riemann sphere. So when 
m = n = l, this is exactly the classical theorem of Emile Picard. The 
firstfewvaluesofpare:p(2)=5,p(3) = 7,p(4) = 10,p(5) = 13,p(6) = 17, 
p (7 )=21 ,p (8 )=26 , p(9)=31,p(10) = 37. 

Recently, Kobayashi introduced the notion of a hyperbolic (com­
plex) manifold, [3], [4] (cf. also Definition 1.3 of [6]). A hyperbolic 
manifold has most of the useful analytic properties of a bounded do­
main in Cw, including the fact that every holomorphic mapping of C 
into it reduces to a constant. There is the natural question of obtain­
ing hyperbolic manifolds by removing suitable subsets of PnC. P. A. 
Griffiths suggested that PnC minus a singular hypersurface of a very 
high degree might be hyperbolic. On the other hand, P. J. Kiernan 
has proved in [2] that PnC minus 2« hyperplanes in general position 
is never hyperbolic. The above result suggests the 

CONJECTURE. PnC minus p(n) hyperplanes in general position is 
hyperbolic. 

The determination of the smallest value of p(w) for which the above 
theorem and conjecture remain valid is probably a difficult problem. 

The Picard theorem may be generalized in yet another way. We 
formulate a second 
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CONJECTURE. If x: O—tPnC is a holomorphic mapping whose dif­
ferential is nonsingular somewhere, then x(Cn) must intersect one of 
(n+2) hyperplanes in general position. 

This conjecture has been verified for w ^ 4 . See [5, Chapter V, §5]. 
PROOF OF THE THEOREM. We shall make use of the following 

lemma whose proof is given at the end. 

LEMMA. Let Hi, • • • , HpW be p(n) hyperplanes in PnC in general 
position, and let Ak be a k-dimensional projective subspace of PnC not 
contained in any of Hi, • • • , HP(n), ( l ^ f e ^ n —1). Then the set 
{AkC\Hi\ i= 1, • • • , p(n)} contains at least (k+2) hyperplanes of Ah 

in general position. 

We will also need the following well-known consequence of the 
defect relations of Ahlfors ( [ l ] and [5, Chapter V, §5]): If x:C-»PnC 
is a holomorphic mapping which avoids (n+2) hyperplanes of PnC 
in general position, then x(C) lies in a proper projective subspace of 
PnC 

Now it suffices to prove the theorem for a holomorphic mapping 
x: C—>PnC. Since by assumption, x(C) avoids p(n) (^n+2) hyper­
planes in general position, x(C) must lie in a proper projective sub-
space of PnC If we suppose x is not constant, then there is a k-
dimensional projective subspace Ak, l^k^n — 1, such that x(C) is 
contained in Ak, but not in a proper projective subspace of Ak. So 
x: C-+Ak is holomorphic and avoids the following hyperplanes of 
Ak: Akr\Hx, • • • , AkC\Hp{n). But there are a t least (k + 2) of the 
latter in general position, and so the contradiction completes the 
proof. 

I t remains to prove the lemma. We lift the problem to Cn+1, where 
it assumes this form: for 1 ^k^n — 1, let Ek+1 be a vector subspace 
of Cn+1 of dimension £ + 1, and let Hi, • • • , HP(n) be p(n) hyper­
planes of Cn + 1 ( = vector subspaces of codimension one) in general 
position. Then {Ek+ir^Hii i=l, • • • , p(n)} contains at least (k+2) 
hyperplanes of Ek+1 in general position. 

In the dual space (Cn + 1)* of Cn+1, Ek+l corresponds to a vector 
subspace F of dimension n — k (i.e. F is the set of ƒ such that kernel 
/ 2 E * + 1 ) , and each Hi corresponds to a nonzero vector Pi (i.e. kernel 
Pi = Hi). F contains none of the Pi's because Hi does not contain 
Ek+1 for each i. Furthermore, the fact that Hi, • • • , Hp^n) are in gen­
eral position is equivalent to saying that any (n + 1) of Pi, • • • , P9(n) 
are linearly independent. Choose a basis Qi, • • • , Qn-k of F. Since 
no Pi is in F, {Qi, • • • , on-*, Pi} is a linearly independent set. 
Suppose P i , • • • , P i (l^k) have been so chosen that {Qi, • • • , 
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Qn-k, Pu • • - , Pi} is a linearly independent set; the linear span of 
the latter is of dimension n—k+l^n and so contains a t most n of 
{Pi, • • • , Pp(n)}. Since p (w)^w+2 , we can assume that 

Pi+i£jEspan{Çi, • • • , (?»„*, P x , • • • , Pi}. 

Hence {(?i, • • • , Qn-*, Pu • • • * P*+i} is a linearly independent set. 
In this way, we can choose a basis {(?i, • • • , (?n-*, Pi , • • • , PJMI} 

of (0+ 1 )*-
Relative to this basis, the coordinates of Qi, • • • , (?„_*, P i , • • • , 

Pjfe+i are of course: 

Ö i = (1,0, ,0) 

&__* = ( o , . . . , 0 , 1 , 0 , •• - ,o) 

Pi = (0, ,0 ,1,0, . . - , 0 ) 

n + i = (o, ,0 ,1) . 

Now let P = (a0, • • • , an) be the coordinates of a hyperplane of 
Cn + 1 relative to {(?i, • • • , (?»-*, Pi , • • • , P*+i}. If this hyperplane 
does not contain Ek+1, then its intersection with Ek+1 is a hyperplane 
of Ek+1 whose coordinates relative to {Pi, • • • , P*+i} are obviously 
P' = (an-k, • • • , ^n). Let us fix this notation of passing from P to P ' . 
So if we write for each i £ {k+2, • • • , p(n)}, 

P% = (0*0, • • • , din) 

relative to {Ci, • • • , Qn-k, Pu • • • , P*+i}, the coordinates of the 
hyperplane of Ek+1 given by HiC\Ek+l are 

Pi = (0*\n-fc, • • • , din) 

relative to {Pi, • • • , PA?+I }. Now consider the matrix : 

A' = ' 
L0p(n),n-Jfe " * * 0p(n),nJ 

whose rows are just the coordinates of P£+2, • • • , P'pw We claim 
that there is a t least one row such that none of its entries is zero. If 
we suppose not, then there is a t least one zero in each row. Let us 
pick out exactly one zero from each row. We have then to consider 
the distribution of these {p(n) — (k + l)} zeros in the (k + 1) columns 
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of this matrix. We will show presently that a t least one column has 
a t least (n — k + 1) zeros. Assuming this for the moment, we may as 
well let the first column contain at least (n—k + 1) zeros. This means 
that there are a t least (n—k + 1) of P i + 2 , • • • , Pp(n) whose first co­
ordinates are zero. But the first coordinates of P'2, • • • , P£+ 1 are 
also zero. So there are a t least (n+1) of P!2, • • • , P'p(n) whose first 
coordinates are zero, or equivalently, there are at least (n + 1) of 
P2 , • • • , PP(n) in the hyperplane of (Cn + 1)* defined by setting the 
(n — k + l)th coordinate equal to zero. This contradicts the fact that 
any (n+1) of P l f • • • , Pp(w) are linearly independent. Hence we may 
assume that P't+2 = (dk+2,n-k, • • • , a*+2,n) has the property that none 
of its coordinates is equal to zero. This implies that HiC\Ek+l, • • • , 
Hk+2(r^Ek+1 are (k+2) hyperplanes of Ek+1 in general position because 
now they have these coordinates relative to {Pi, • • • , P*+i} : 

(1 ,0 , , 0 ) 

(0, , 0, 1) 

I t remains to show that a t least one column of A' has a t least 
(n—k + 1) zeros if every row of A' has a zero. If not, each column has 
at most (n — k) zeros. So there are altogether a t most (n—k) (k + 1) 
such zeros in A'. Since we chose exactly one zero from each row of A', 
there are a t most (n—k) (k + 1) rows of A' or, what is the same thing, 
{P*+2, • • • , PP(n)} contains at most (n—k) (k + 1) elements. Hence 

P(n) S(n- k)(k + 1) + (k + 1) = (* + l)(n -k+1). 

We now show that this is impossible. 
Consider the function/: [ l , n — l]—>R such that 

/(*) = (*+l)(n-* + l) + l. 
Clearly, f(x) =n — 2xso that the maximum of ƒ is assumed a t # = w/2. 
We consider two cases separately. 

Case 1. » is even. Let n = 2/>. Then 

f(n/2) - f(p) - (p + l ) 2 + 1 - p(n). 

Hence p(n)^(n-k + l)(k + l) + l>(n-k + l)(k + l) for any integere 
such that l^k^n — 1. Contradiction. 

Case 2. n is odd. Let n = 2p+ly then n/2—p+\. Now note that 
f>0 in [l , n/2) so that ƒ is strictly increasing in [l , n/2). Since p 
is the largest integer in [l , n /2) , f(p)^f(k) for any integer k^p. 
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Similarly, ƒ '<() on (n/2, n — l ] , so that since (p + 1) is the smallest 
integer in (n/2, n — l ] , f(p + l) è/(&) for all integers k^p + 1. One 
checks easily that in this case, ƒ(p) =f(p + l) = (p + l)(p+2) + 1 =p(rc). 
Hence p(w) è/(fe) for all integers k such that l^k^n — 1. So 

p(rc) è (» - * + l ) ( i + 1) + 1 > (» ~ * + 1)(* + 1). 

Again a contradiction. 
NOTE. After the completion of the paper, R. Osserman pointed 

out that the "well-known consequence of the defect relations of 
Ahlfors" above should be properly attributed to E. Borel (Acta 
Math. 20 (1897), 357-396). He further called my attention to H. 
Cartan's extension of Borel's theorem to holomorphic maps in the 
neighborhood of an isolated singularity. (Ann. École Norm. Sup. 
45 (1928), 255-346). Cartan's result together with the lemma above 
lead to the following: given a holomorphic map of a punctured disk 
into PnC, either it extends to a holomorphic map in the full disk, or 
else the image intersects infinitely often every hyperplane with a t 
most p(») — 1 exceptions. I t should be noted that Cartan's theorem 
is also a consequence of the Ahlfors-Weyl theory (cf. [5] and the 
Appendix in H. Wu, Proc. Sympos. Pure Math. Vol. XI pp. 480-
532). 
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