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1. Introduction. We desire to use the inclusion-exclusion formula 
for determining asymptotic approximations. This object was first 
achieved for a special problem by P. Erdös and I. Kaplansky [ l ] . The 
following indicates the form of the asymptotic estimate we may 
obtain. 

Let S be an arbitrary finite set, each element of which may 
be said to possess "properties" from an L-set P of properties 
{Pu P2 , • • - , PL}. Let 

N(Piv i\-2, • • • , Pif) 

be the number of elements in the set S which possess all the properties 
of the set {P t l , Pt-2, • • • , P*,}, and possibly more. To define Sj, let 

#(OtoG'O-1 = Z X(Piv Piv • • • , Pi,), 
where the sum runs over all ./-subsets of P . Let us formally define 
(si)j = Sjy with Sj = 0 for j>L. Then if £(0) denotes the number of 
elements of 5 with none of the properties of P , we may formally 
represent E(0) by 

E(0) = N(0)e-K 

This representation is merely the sieve formula or the simple 
inclusion-exclusion formula in a formal guise. I t turns out that for a 
great many problems of interest, this formal equation is a valid 
asymptotic approximation when certain restrictions are placed on 
the properties of P . 

Some notation is required for the results which follow. Let Mn(R, S) 
be the class of nXn (0 — 1)-matrices with row-sum vector R and 
column-sum vector S. We denote by r» or s* the ith component of the 
w-length vector R or S respectively. I t is always assumed that XX' 
= ^S{. We further restrict the vectors R and 5 so that the number 
N of integers t i n { l f 2 , • • • , # } such that r» = 0 or $»• = 0 is very small 
for large n: JV=0(log «). The symbol Mn(k, k) designates the class 

1 This work is a major portion of the author's dissertation for a PhD, received at 
the Rockefeller University. 
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of nXn (0 — 1)-matrices all of whose row sums and column sums are 
k. E.g.: Mn(l, 1) is the class of permutation matrices. 

We shall hereafter use the tablemaker's notation, i = l ( l )# , to 
signify that i ranges from 1 to » by steps of 1. 

Given a n » X » matrix Ft called a "frame," a matrix A(EMn(R, S) 
is said to "lie in" the frame F iff F(i, j) = l whenever A(i, j ) = l, 
; = l ( l ) r c , j = l ( l ) « . 

Mn(R, S) is said to be a class of sparse matrices with associated 
function ƒ(w) =o(w) if ri<f(n) and Si<f(n), i = l(l)n. Depending on 
the function ƒ(w), the sparseness of the matrices in Mn(R, S) may be 
a very weak restriction for a particular w; we may consider this prop­
erty to be meaningful only as n ranges: given ƒ(w), then as n ap­
proaches infinity all the matrices which are sparse with respect to ƒ(#) 
consist almost entirely of zeros. 

Mn(R, S) is said to be a class of dual-sparse matrices with asso­
ciated function ƒ(n) if (n — ri)<f(n) and (n — Si)<f(n), i = l(l)n. We 
also consider a graph to be sparse or dual sparse if the incidence 
matrix of the graph is sparse or dual-sparse respectively. 

2. Asymptotic enumerations. The first result which is solved by 
the technique for deriving asymptotics from the inclusion-exclusion 
formula is a slight generalization of the theorem of Erdös and 
Kaplansky [l ], who showed that if A GMn(n — k, n — k),k< (log w)3/2~€, 
then for sufficiently large n 

| (Perm A)ek/n\ — 11 < n~% 

where c is a positive constant depending only on e. The technique 
used here is very close to that which was used in [ l ] . Note that 
Perm A, the permanent of A, is the number of permutations which 
"lie in" the "frame" A, and thus this is a problem in permutations 
with restricted positions. We proceed to state our result: 

THEOREM 2.1. Let AÇEMn(R, S), Mn(R, S) a class of dual-sparse 
matrices with f (n) = (logn)1""*. Then the number of zeros in A is given by 
n*— X)r*==^'» and 

Perm A = n\^L^{\ + o(w~1+fi)), 

where S is arbitrarily small for n sufficiently large. Hereafter, this qualifi­
cation of order terms shall not be stated explicitly. It is assumed that S 
and c are arbitrarily small numbers when n is sufficiently large. 

This theorem, though broader than Erdös and Kaplansky's result, 
is less sharp. Indeed, Theorem 2.1 gives their result as a corollary but 
only with the stronger restriction k < (log n) 1~% and a weaker error 
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bound. N. S. Mendelsohn [2] has derived a full asymptotic series for 
Perm A under stronger restrictions but gives no error bounds. 

A graph G consists of a set of vertices {1, 2, • • • , n) and a set of 
edges, which are ordered or unordered pairs of vertices (i, j). If the 
edges are ordered pairs the graph is called directed; otherwise, it is 
undirected. We assume that all graphs are without loops, i.e. (i, i) 
cannot be an edge, i = l(l)n. A complete graph contains all edges 
between vertices that may be formed. A hamiltonian circuit in a 
graph is an w-tuple of edges from the graph : 

((io, h), (h, ^2), • • • , (in-i, in)), 

where io = in but otherwise no vertex is used twice: ij^ik for k^j^j, k 
= l(l)w. The number of hamiltonian circuits in a graph G is denoted 
by#h.c.(G). 

The following result is obtained using the inclusion-exclusion 
technique for asymptotics on graphs. 

THEOREM 2.2. Let the directed graph G on n vertices be dual sparse, 
with f (n) = (log w)1"*. If L directed edges may be added to G to achieve a 
complete directed graph, then 

#h.c.(G) - (n - l)!e-L '*(l + o(rrl+*)). 

In a directed graph, an edge (i, j) is said to be incident from the 
vertex i and incident to the vertex j . A corollary to Theorem 2.2 there­
fore is: if G is a directed graph on n vertices with the same number, 
n — k — 1, edges incident to and from each vertex, k<(log n)l~*y then 

#h.c. (G) - (» - 1)!*-*(1 + o(n~l+*)). 

We also may derive from Theorem 2.2: 

COROLLARY. Let the nondirected graph G on n vertices be dual sparse 
with f (n) = (log n)1_€ . If L edges may be added to G to achieve a complete 
graph, then 

#h.c.(G) = l /2(» - l)!<r2L'»(l + o{tr1**)). 

The final result obtained using the inclusion-exclusion technique 
for asymptotics, deals with the number of matrices in the class 
Mn(R, 5) , #Mn(R, S). This problem was suggested by H. J. Ryser [3]. 

THEOREM 2.3. Let Mn(R, S) be a collection of sparse matrices with 
/ ( w ) = (log »)i /«- . Then 
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Wn(R,S) - ^ ^ e x p I " " 1 (2>,(r< - 1) ) (E * ( * - 1))1 

•(l + ö(fT-l+a)). 

In the formula above, all sums and products range from 1 to n. 
Particularizing Theorem 2.3 to the evaluation of #Mn(k, k), k 
< (log n) 1/4~~% we obtain 

#Mn(k, k) = -l__i_ e-(*-i)2/2(! + 0(fT
l+*)). 

3. Probabilistic asymptotic enumerations: first moments. Com­
bining Theorem 2.3 with Theorem 2.1, it is not difficult to obtain the 
following "probabilistic" result: 

THEOREM 3.1. Assume 2 ^k<(log w)1/4~e. Then 

/k —• 1 /(k — l)fc~-1\n 

Average Perm B = e~1'2 A/ 2-irn ( ) (1 + o(n~1+8)). 

To derive a parallel theorem for the number of hamiltonian circuits 
in a sparse graph, we must first derive an intermediate result corre­
sponding to Theorem 2.3. Using the correspondence between graphs 
and their incidence matrices, this is achieved by an argument involv­
ing equivalence classes in Mn(k, k) followed by invoking Theorem 2.3 
itself. 

Let DGn(k, k) be the class of directed graphs on n vertices with k 
edges incident to and from each vertex. 

LEMMA. LetDGn(k$k) be a class of sparse graphs with f (n) = (log n) 1/4~"6. 
Then the cardinality of DGn(k, k), 

#DGn(k, k) « - ^ < r ( * 2 + 1 ) / 2 ( l + o(n-w)). 

This lemma, in combination with Theorem 2.2 gives 

THEOREM 3.2. For DGn(k, k) a class of sparse graphs with 2£k 
<(log»)1/4-% 

'(A - 1)*-V age fn.c^Cr; = e^* \/ —;— ZT(n~*) [ 

•(l + ofa-1-")). 

/k — 1 /(k — l)*-^* 
Average #h.c.(G) = e"« \f —— 2r(tr*) P ' ) 
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4. Probabilistic asymptotic enumeration: the second moment. In 
this section, a great amount of exacting calculation is required to find 
the second moment of the permanent of a matrix JB, as B ranges over 
the class Mn(k, k). The formula derived is contained in the following 
theorem. 

THEOREM 4.1. Let 3 ̂  k < (log n)11*-'. Then 

/k — 1\ /(k ~ l)*-l\2n 
Average (Perm B)2 = e"1 ( J 2*r» ( ) 

( i+ï^-.+o(i))<i+o(""" ,+' ) )-
As a direct corollary of this and Theorem 3.1, we have the following 

"strong" probabilistic result. 

COROLLARY. Let k=g(n) a monotonically increasing integer valued 
function of n, not bounded above, such that g(n)< (log n)1/4~6. Then 
ranging over all n, with k = g(n), almost all matrices in Mn(k, k) have 
permanent asymptotically equal to Averagej3eiifn(fc,jfc) Perm B. 

This is an immediate consequence of the fact that the second 
moment of Perm B is equal to the square of the first moment asymp­
totically as n and k approach infinity. 

5. Suggested further work. The author believes that the approach 
used to arrive a t the estimates of §2 of this work, i.e. the sieve for­
mula, may be broadened by using the generalized inclusion-exclusion 
formula to arrive at asymptotics. A result which should be derivable 
from this technique is stated here as a conjecture. 

CONJECTURE 1. Let AÇLMn(Ri 5) , a sparse class of matrices with 
/(w) = (log w)1_ ' . Assume r<>0, s»>0 for all but O (log n) integers 
i = l(l)n. Let L be the total number of ones in A. Finally, Let E(m) 
measure the number of permutation matrices having exactly m ones 
in positions in common with ones of A. Then 

E(m) ~ ( J (n - m) !er-(L-|n)/<»-*»>, 

asymptotically in n. 
Note that in the special case L = «, rt- = st- = l for i = l ( l )« , this 

reduces to the generalized Problème des récontres. The proof of this 
formula should be straightforward and is recommended as a research 
problem. I t would be very useful in certain applications of combina­
torics, such as finding higher moments in probabilistic asymptotics 
(see [4]). 
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Another natural problem which suggests itself is to find the second 
moment of #h.c.(G) as G varies over the class DGn(k, k). This would 
be the graph parallel of the matrix Theorem 4.1. One might hope for 
a strong result similar to the corollary to Theorem 4.1. 

A third area of study would be to try to asymptotically enumerate 
the number of (properly limited) sparse matrices in a dual-sparse 
frame. Almost all the results of this work can be stated in this way, 
although they are trivial cases. Much of the work that went into 
proving Theorem 4.1, however, involved a specific nontrivial problem 
of this nature. 

Finally, we offer two conjectures of surpassing difficulty, which are 
merely suggested by the results above. The author can suggest no 
line of attack for their solution. 

CONJECTURE 2. We note that, as an extension of the work 
[ l ] , Yamamoto showed [5] that for a dual sparse matrix 
AÇiMn(n — k, n — k), k<nllz~% Perm B~nle~k. Using Stirling's ap­
proximation and taking the nth root, we have 

(Perm B)l'n ~ (n - k)/e. 

At the same time, the corollary to Theorem 4.1 gives, in the nth 
root, that for BÇzMn(k, k), k a. function of n increasing without 
bound, &<(log w)1/4~e, almost all matrices B have 

(Perm B)lin~k/e. 

The conjecture is immediate that for i intermediate between these 
two extreme ranges, asymptotically in n for almost all B(E;Mn(it i) 
we have 

(Perm B)lin~i/e. 

CONJECTURE 3. Erdös and Kaplansky pointed out that the perma­
nent of an element of the class of matrices Mn(n — k, n — k) counts the 
number of ways that a (& + l)st row may be added to a specific latin 
rectangle of size k Xn . Leaning heavily on Conjecture 2, we may hope 
that in the n squared root the number of latin squares, #L.S., is 
asymptotic to the product of the average permanents of B, B £ Mn(i, i), 
as i goes from 1 to n. The conjecture implied is then 

(#L.S.)1 /»3~**M 
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