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Introduction. A general question which is of interest is the follow-
ing. Suppose that f is a mapping of a compact metric continuum X
onto a metric space Y. Under what conditions is there an embedding of
X and Y in E* (Euclidean n-space) or He (Hilbert space) so that f is
topologically equivalent to a projection onto YV defined by some collection
of parallel hyperplanes? Theorem 1 below provides an answer for a
very special case of this general question. Although this theorem is
actually a corollary of a more general theorem, we feel that its proof
provides motivation and understanding for the main theorem.

THEOREM 1. Suppose that U is the Universal 1-dimensional Menger
Curve [1] and that f is a light open mapping of U onto I (the interval
[0, 1]) such that f~'(x) is homeomorphic to a Cantor set for each x in I.
Then there is a homeomorphism h of U into E? such that the mapping p
defined by projecting U onto I through planes parallel to the yz-plane is
topologically equivalent to f, that is, ph=f.

We shall sketch a proof of this theorem. Our proof depends on an
important theorem of J. H. Roberts [5] concerning contractibility in
spaces of homeomorphisms, some very useful techniques of Dyer and
Hamstrom [2], and a powerful selection theorem of E. A. Michael

[4].

Statements of some results used in our proofs. Suppose that X is
a compact metric space and dimension X =# (an integer). For each
positive integer &, let H(X, I*) be the space of all homeomorphisms
of X into I* (a k-cell) and let C(X, I*) be the space of all mappings
of X into I*. The metric, in each case, is the usual one: p(f, g)=
max d(f(x), g(x)) for x in X and d is the usual metric for I*.

TrEOREM (J. H. ROBERTS [5]). Suppose that each of X and K is
a compact metric space, dim X =n, dim K=r, and k=2n+42-4r. Let
o and ay be mappings of K into C(X, I*¥). Then there exists a homotopy
[ KXI—>C(X, I*¥) such that

(¢)) f(w' 0) =a0(w)v f(w’ 1) '_"'al(w)v wEK, and

(2) for each t, 0<t<1, f(w, ) EH(X, I¥).
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THEOREM (E. A. MICHAEL [4]). If each of A and B is a metric space,
A is complete, covering dimension of B=n-+1, Z is a closed subset of
B, F is a function taking A onto B such that the collection of inverses
under F is lower semicontinuous (defined below) and equi-LC* (as de-
fined below), and f is a mapping of Z into A such that for z in Z,
f(2) E F-1(2), then there is a neighborhood U of Z in B such that f can be
extended to a mapping f* of U into A such that for b& U, f*(b) € F-1(b).
If each inverse under F has the property that its homotopy groups of
order =n vanish, then U may be taken to be the space B.

Notation and definitions. In this paper, all mappings are continuous
and all spaces are meiric. A mapping f of a space X into a space ¥ is
light iff f~'f(x) is totally disconnected for each x in X. And, f is open
iff for each U open in X, f(U) is open relative to f(X). A character-
ization of the Universal 1-dimensional Curve U may be found in
R. D. Anderson’s paper [1].

DEerFINITION (DYER AND HaMsTROM [2]). A mapping p:T—B is
said to be completely regular iff for each ¢>0 and each point b in B,
there is a >0 such that if x€B and d(x, b) <48, then there exists a
homeomorphism ks, of p~1(b) onto p~!(x) which moves no point as
much as e.

DEFINITION. A collection G of closed point sets filling a metric
space X (i.e., the union of the elements of G is X) is said to be equi-
LCr iff for each €>0, g in G, and xEg, there is a §>0 such that if
REG and f is a mapping of a k-sphere S*¥, 0<k=<# into AN\N,(x),
then there is an extension F of f to the (k4 1)-disk D*¥+1, into AN\ N(x).

The hypothesis of Theorem 1 is not vacuously satisfied. Such map-
pings are easy to construct.

Indication of a proof of Theorem 1. Let 4 denote a unit cube
(3-cell) in E® whose vertices are (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),
1,0,1),(0,1,1),(1,1,0),and (1, 1, 1). Let C, denote a 2-cell section
of A cut by the plane perpendicular to the x-axis at x.

For each x, let H(f~'(x), C:) denote the space of all homeomorphisms
of f~1(x) into C,. For convenience, we shorten this to H,. We use the
usual metric on H,, i.e., for g, k in H,, p(g, k) =max {p[g(x), H(x)]}.
Now, H, is a topologically complete metric space.

Consider the collection H of all H, and let H* denote the union of
the elements of H. The space H* is a topologically complete metric
space. This follows from a theorem in [3]. However, we shall indicate
here how a metric may be defined.

A metric for H*. If g€ H*, then g&EH, for some x. Let § denote
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the graph of g in UX C where C is a 2-cell. For each pair of elements
g, b of H* where gEH, and k€ H,, let D(g, h) =Hausdorff distance
between 2 and 4. Although D is a metric for H*, it may not be com-
plete. However, H* is a topologically complete metric space. This
follows from Theorem 1 of [3].

By a theorem of Roberts [5], H, for each x is locally connected.
The collection H of all H, is equi-locally connected in the homotopy
sense (equi-L(C?). That is, for each H,, pEH,, and €>0, there is a
8> 0 such that if ¢ is a mapping of S° (a 0-sphere or pair of points)
into N;(p)N\H, for H, in H, then ¢ can be extended to a mapping
& which takes a 1-cell into N.(p)\H,. This may be proved by first
showing that f is actually completely regular. Next, apply an argu-
ment similar to Dyer and Hamstrom [2] or to mine in [3].

Let H* be the union of the elements of H and F denote the func-
tion from H* onto I=[0, 1] such that F-!(x) =H,. It follows that
F is lower semicontinuous. That is, if {h;}—)h where h;, h& H, then
H, is in the closure of U;%, H;,. See [3, p. 137]. Now by a selection
theorem of Michael [4], there is a continuous selection ® from an
open interval (a, b) to H* such that ®(x) & F-!(x) = H,. By Corollary
2 of [5], F-1(x) for each x in I is arcwise connected. Thus, by
Michael’s Theorem [4, p. 563], (a, b) may be taken as the space
[0, 1]. The mapping ® induces a homeomorphism % from f~1[0, 1] = U
into A (a 3-cell) such that h[ f(x) =®(x). That is, for » in U,
h(u) =®[f(u) ](x). It follows that f=pk where p is the projection of
A onto I by planes parallel to the yz-plane. The theorem is proved.

REMARKS. Projections need not be local products (locally trivial
fiber spaces), even in the case that p:X—Y has the property that
all sets p~!p(x) are homeomorphic for the various x€X, X is a
Peano continuum, p is open, and p is monotone. See Ungar’'s ex-
ample [6].

Main theorem. Now, we are ready to state the general theorem for
which Theorem 1 is a special case.

THEOREM 2. Suppose that f: X=Ir+1 is a completely regular map-
ping, X is a complete metric space, for each x in X, f~Yf(x)=K, a
compact n-dimensional set. Let k=2n-+2-+4r. Then there is a homeo-
morphism h of X into I*+7+1 such that f=ph where p is the projection
mapping of I* X I+ onto IT+1.

It should be clear from the indicated proof of Theorem 1 that a
similar argument yields Theorem 2.
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