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Introduction. A general question which is of interest is the follow­
ing. Suppose that ƒ is a mapping of a compact metric continuum X 
onto a metric space F. Under what conditions is there an embedding of 
X and Y in En (Euclidean n-space) or Ha (Hubert space) so that ƒ is 
topologically equivalent to a projection onto Y defined by some collection 
of parallel hyperplanes? Theorem 1 below provides an answer for a 
very special case of this general question. Although this theorem is 
actually a corollary of a more general theorem, we feel that its proof 
provides motivation and understanding for the main theorem. 

THEOREM 1. Suppose that U is the Universal 1-dimensional Menger 
Curve [l ] and that ƒ is a light open mapping of U onto I (the interval 
[0, l ] ) such thatf"1(x) is homeomorphic to a Cantor set for each x in I. 
Then there is a homeomorphism h of U into E3 such that the mapping p 
defined by projecting U onto I through planes parallel to the yz-plane is 
topologically equivalent to f, that is, ph=f. 

We shall sketch a proof of this theorem. Our proof depends on an 
important theorem of J. H. Roberts [5] concerning contractibility in 
spaces of homeomorphisms, some very useful techniques of Dyer and 
Hamstrom [2], and a powerful selection theorem of E. A. Michael 
[4]-

Statements of some results used in our proofs. Suppose that X is 
a compact metric space and dimension X = n (an integer). For each 
positive integer k, let H(X, P) be the space of all homeomorphisms 
of X into P (a fe-cell) and let C(X, P) be the space of all mappings 
of X into P. The metric, in each case, is the usual one: p(/ , g) = 
max d(f(x)f g(x)) for x in X and d is the usual metric for P. 

THEOREM (J. H. ROBERTS [5]). Suppose that each of X and K is 
a compact metric space, dim X = n, dim K — r, and k^2n+2+r. Let 
ao and a\ be mappings of K into C(X, P). Then there exists a homotopy 
f:KXl-^>C(X, P) such that 

(1)/(co, 0)=a0(co),/(a>, 1) =ai(a>), o)EK, and 
(2) for each tf 0 < / < l , / ( a > , t)EH(Xt P). 
1 Research supported in part by NSF Grant GP 6951. 
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THEOREM (E. A. MICHAEL [4]). If each of A and B is a metric space, 
A is completey covering dimension of B^n+1, Z is a closed subset of 
By F is a function taking A onto B such that the collection of inverses 
under F is lower semicontinuous {defined below) and equi-LCn (as de­
fined below) y and f is a mapping of Z into A such that for z in Z, 
f(z)ÇiF~l(z)y then there is a neighborhood U of Z in B such that f can be 
extended to a mapping f * of U into A such that for b £ U,f*(b)CiF-l(b). 
If each inverse under F has the property that its homotopy groups of 
order ^n vanish, then U may be taken to be the space B. 

Notation and definitions. In this paper, all mappings are continuous 
and all spaces are metric. A mapping ƒ of a space X into a space Y is 
light iff f~lf(x) is totally disconnected for each x in X. And, ƒ is open 
iff for each U open in Xyf(U) is open relative tof(X). A character­
ization of the Universal 1-dimensional Curve U may be found in 
R. D. Anderson's paper [ l ] . 

DEFINITION ( D Y E R AND HAMSTROM [2]). A mapping p:T-*B is 
said to be completely regular iff for each €>0 and each point b in By 
there is a 8 > 0 such that if x(E:B and d(x, b)<8t then there exists a 
homeomorphism hbx of p~l(b) onto p~l(x) which moves no point as 
much as €. 

DEFINITION. A collection G of closed point sets filling a metric 
space X (i.e., the union of the elements of G is X) is said to be equi-
LCn iff for each €>0, g in G, and # £ g , there is a ô > 0 such that if 
hÇ£G and ƒ is a mapping of a ^-sphere 5*, O^k^n into hr\Ns(x)y 
then there is an extension Fol f to the (fc-fl)-disk Dk+1

f into hC\N€(x). 
The hypothesis of Theorem 1 is not vacuously satisfied. Such map­

pings are easy to construct. 

Indication of a proof of Theorem 1. Let A denote a unit cube 
(3-cell) in E3 whose vertices are (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), 
(1, 0, 1), (0, 1, 1), (1, 1, 0), and (1, 1, 1). Let Cx denote a 2-cell section 
of A cut by the plane perpendicular to the x-axis a t x. 

For each xt let H(f"1(x)y Cx) denote the space of all homeomorphisms 
olf~l(x) into Cx. For convenience, we shorten this to Hx. We use the 
usual metric on HXy i.e., for g, h in HXf p(g, h) = max {p[g(x)t H(x)]}. 
Now, Hx is a topologically complete metric space. 

Consider the collection H of all Hx and let H* denote the union of 
the elements of H. The space H* is a topologically complete metric 
space. This follows from a theorem in [3]. However, we shall indicate 
here how a metric may be defined. 

A metric for H*. If g £ i l * , then g&Hx for some x. Let g denote 
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the graph of g in UXC where C is a 2-cell. For each pair of elements 
g, h of H* where gÇîHx and hE;Hy, let D(g, h) =Hausdorff distance 
between g and h. Although D is a metric for H*, it may not be com­
plete. However, H* is a topologically complete metric space. This 
follows from Theorem 1 of [3]. 

By a theorem of Roberts [5], Hz for each x is locally connected. 
The collection H of all Hx is equi-locally connected in the homotopy 
sense (equi-LC0). Tha t is, for each Hx, pÇzHx, and €>0, there is a 
8 > 0 such that if 0 is a mapping of S° (a 0-sphere or pair of points) 
into Nt(p)C\Hy for Hy in H, then <t> can be extended to a mapping 
$ which takes a 1-cell into Nt(p)r\Hv. This may be proved by first 
showing that ƒ is actually completely regular. Next, apply an argu­
ment similar to Dyer and Hamstrom [2] or to mine in [3]. 

Let H* be the union of the elements of H and F denote the func­
tion from H* onto 1 = [O, l ] such that F~l{x)=Hx. I t follows that 
F is lower semicontinuous. Tha t is, if {&»}—»/& where ft»-, h(EH, then 
Hh is in the closure of U/L1 Hhr See [3, p. 137]. Now by a selection 
theorem of Michael [4], there is a continuous selection $ from an 
open interval (a, b) to H* such tha.t$(x)(EF^1(x) =HX. By Corollary 
2 of [5], F - 1 ^ ) for each x in ƒ is arcwise connected. Thus, by 
Michael's Theorem [4, p. 563], (a, b) may be taken as the space 
[O, 1 ]. The mapping $ induces a homeomorphism h from f~l [O, 1 ] = U 
into A (a 3-cell) such that h\f~l(x) =$(#) . That is, for u in U, 
h(u) =$\f(u)](u). I t follows that ƒ = ph where p is the projection of 
A onto i" by planes parallel to the yz-plane. The theorem is proved. 

REMARKS. Projections need not be local products (locally trivial 
fiber spaces), even in the case that p'.X—±Y has the property that 
all sets p~~lp{x) are homeomorphic for the various x(EX, X is a 
Peano continuum, p is open, and p is monotone. See Ungar's ex­
ample [6]. 

Main theorem. Now, we are ready to state the general theorem for 
which Theorem 1 is a special case. 

THEOREM 2. Suppose that f : X=*Ir+l is a completely regular map­
ping, X is a complete metric space, for each x in X, f~1f{x)=K1 a 
compact n-dimensional set. Let k^2n+2+r. Then there is a homeo­
morphism h of X into P+r+l such that f=ph where p is the projection 
mapping of PXlr+1 onto Ir+1. 

I t should be clear from the indicated proof of Theorem 1 that a 
similar argument yields Theorem 2. 
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