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In [ó] H. Yamabe established the following "simultaneous ap­
proximation and interpolation" theorem, which generalized a result 
of Walsh [4, p. 310] (cf. also [ l ] , [3] for further generalizations), and 
is related to a theorem of Helly in the theory of moments (cf. e.g. 
[2, pp. 86-87]). 

THEOREM (YAMABE). Let M be a dense convex subset of the real 
normed linear space X, and let #*, • • • , # * £ X * . Then for each xÇ^X 
and each e>0 , there exists a y£:M such that \\x—y\\<€ and x*(y) 
= *?(*) (i=l, • • • , » ) . 

Wolibner [S], in essence, proved that Yamabe's theorem could be 
sharpened in the particular case when X = C([a, b]), M=(? = "the 
polynomials," and the xt are "point evaluations." Indeed, from the 
results of [5] there can readily be deduced the following 

THEOREM (WOLIBNER) . Let a^h< • • • <tn^b and let (P be the set 
of polynomials. Then for each a;£C([a, b]) and each e>0 , there exists a 
pE6> such that \\x—p\\<e, p(ti)=x(ti) (i = l, • • • , w), and \\p\\ = \\x\\. 

Motivated by Wolibner's theorem, we consider the following more 
general problem. Let M bes. dense subspace of the real normed linear 
space X, and let {x*, • • • , #*} be a finite subset of the dual space 
X*. The triple (X, M, {xf, • • • , x*}) will be said to have property 
SAIN (simultaneous approximation and interpolation which is 
norm-preserving) provided that the following condition is satisfied: 

For each x £ X and each €>0 there exists a y£ilf such that ||#—;y|| 
<e, x*(y)=x*(x) (i = l, • • • , w), and \\y\\= \\x\\. 

In this note we shall outline some of the main results we have 
obtained regarding property SAIN. Detailed proofs and related 
matter will appear elsewhere. 

THEOREM 1. Let M be a dense subspace of the Hubert space X and 
letxf, • • • ,x%EX*. Then (X, M, {*?, • • • ,**}) has property SAIN 
if and only if each x* attains its norm on the unit ball in M. 
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The necessity in Theorem 1 is valid in any reflexive Banach space 
X. Whether the sufficiency is also valid in any reflexive Banach space 
is an open question. Also, in the case when n = l, Theorem 1 is valid 
in any strictly convex reflexive Banach space. 

Let T denote a compact Hausdorff space and C{T) the real con­
tinuous functions on T with the sup norm. If /(ET1, ôt will denote the 
functional "point evaluation" at t, i.e. dt(x)=x(t) for all xÇ:C(T). 

THEOREM 2. Let A be a dense subalgebra of C(T) and h, • • • , tnÇzT. 
Then (C(T), A, {ôh, • • • , ö*n}) has property SAIN. 

Theorem 2 contains that of Wolibner and represents a strengthen­
ing of the S tone-Weiers trass theorem. Theorem 2 is proved by a 
rather tedious induction on n using Yamabe's theorem and the 
following lemma which essentially allows us to approximate the unit 
function in a useful manner. 

LEMMA. Let A and U be as in Theorem 2. Then for each e>0 , there 
exists an element e(EA such that \\e — l | | <c , e(ti) = l (i = l , • • • , w), 
and e^sl. 

Theorem 2 is also valid if "dense subalgebra" is replaced by "dense 
linear sublattice containing constants." However, the following 
examples show that these results cannot be extended very far. 

EXAMPLE 1. Let 

I = { ^ G C([0, l]):*'(è) exists, %'(\) = *(0) - *(1)}. 

Then M is a dense subspace of C([0, l ] ) , which contains constants, 
but such that (C([0, l ] ) , M, dU2) does not have property SAIN (since 
if x £ C ( [ 0 , 1]) is the function which is 1 if O^t^ and x(t) == - 2 J + 2 
if h<t^*l, and y is any element of M which satisfies y(f) = x( | ) = 1 
and ||y|| =| |x| | = 1, then y'($) = 0 so y(0) =y(l) and hence \\x—y\\ è i ) . 

EXAMPLE 2. Let -4=span{^i , x2, • • • } where Xi{t)=ti 

(i = l , 2 , • • •) and define** by x*(x)=fî x(t)dt îor all * G C ( [ l , 2]). 
Then A is a dense subalgebra of C([l , 2]) but (C([l , 2]), A, x*) does 
not have property SAIN (since if e is the unit function, then any 
yÇzA which satisfies x*(y) =x*(e) = 1 must necessarily satisfy 

IMI>i=IMI). 
EXAMPLE 3. Let 

L = {x G C([0, l]):*'(0) exists, a/(0) = *(0)}. 

Then L is a d^wse linear sublattice in C([0, l ] ) but (C([0, l ] ) , X, 50) 
does wo/ have property SAIN (since if e is the unit function and y is 
any element of L satisfying y(0) = e(0) = 1, then y'(0) =y(0) = 1 and 
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so y(t)>l for some *>0 and hence ||y|| > 1 =| |e | |) . 
In the case when X = LP = LP(T, 2 , /x) (l<p< «>) and M is the 

subspace of Lp consisting of those functions which vanish off sets of 
finite measure, we can prove the following theorem. (Recall that the 
représenter of a functional # * £ L * is the function y(ELq, q = p/(p — l), 
such that x*(x) =JT xy dix for all x £ L p . ) 

THEOREM 3. Let 1 <p< <», let MQLP be as above, and let xf, • • • , 
# * £ £ * . Then the following statements are equivalent. 

(1) (Lp, M, {*?, • • • , **}) has property SAIN. 
(2) Each xf attains its norm on the unit ball in M. 
(3) The représenter of each xf vanishes off a set of finite measure. 
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