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Stephen Fisher has recently proved [ l ] that the set of all convex 
combinations of finite Blaschke products is dense in the unit ball of 
the disc algebra. The restriction of the disc algebra to the unit circle 
T is the subalgebra A of C(T) which consists of those f(EC(T) whose 
Fourier transforms are supported by the semigroup of the nonnega-
tive integers. The unimodular members of A (i.e., those fÇzA for 
which | ƒ | = 1 on T) are the (restrictions to T of the) finite Blaschke 
products. Hence Fisher's result is a special case of the following 

THEOREM. Let T be the dual of a compact abelian group G, let 2 be a 
semigroup in I \ let Cs consist of all fÇzC(G) whose Fourier transforms 
ƒ are supported by 2 . Then the set of all finite convex combinations of 
unimodular members of Cs is dense {relative to the supremum norm) in 
the unit ball of Cs. 

The proof is based on the three lemmas stated below. Lemmas 1 
and 2 are of some interest even in the classical case G=T. Lemma 3 
is a technicality; it is used in the proof of Lemma 2. Terminology and 
notation are as in [3]. In particular, the * in Lemma 1 denotes con­
volution, and M(G) is the set of all complex Borel measures on G. 

LEMMA 1. Suppose Q is a closed, convex, balanced subset of C(G) 
which is translation-invariant. Suppose f ÇzC(G) but fQtQ. Then there 
exists fi£M(G) such that 

(0 <y*M)(0)>l, 
(ii) | U * M | U < 1 for every gEQ, 
(iii) p, has finite support in T. 

LEMMA 2. Suppose 2 is a semigroup in I \ 2 is not a group, fC.Cz, 
| | / | |Û0<1, and E is a finite subset of T. Then there exists a unimodular 
gGCs such that g(y) =/(7) for every y£;E. 

LEMMA 3. If Ais a finitely generated abelian group and if S is a semi-
group in A which is not a group, then there is a homomorphism </> of A 
into the real line such that 4>(s)^0for every s&S and <t>(so) = 1 for some 
SoES. 

The theorem is an easy consequence of Lemmas 1 and 2. First, if 
S is a group, then Cs is the same as C(H) where H is the quotient of 
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G modulo the annihilator of A, and the conclusion of the theorem is 
known to hold in C(X) for every compact Hausdorff space X [2, 
Theorem l ] . So assume 2 is not a group, pick ƒ G Cs with | | / | | 0 0 <1 , 
pick ju £itf(G) so that jtfc has finite support E. By Lemma 2 there is a 
unimodular gGCs such that ƒ * ju = g * /x. Let Q be the closed convex 
hull of the unimodular functions in Cs. This Q satisfies the hypotheses 
of Lemma 1. Since ƒ */x = g * ju» Lemma 1 implies that ƒ G Q, which 
proves the theorem. 

We now sketch the proofs of the lemmas. 
PROOF OF LEMMA 1. Assume, without loss of generality, that ƒ is a 

trigonometric polynomial on G. By the Hahn-Banach separation 
theorem [5, p. 108, Theorem 3] there exists ô > 0 and vE:M(G) such 
that (ƒ * j/)(0) > 1 but | (g * v)(0) \ < 1 - 8 for every gEQ. Since Q is 
invariant under translations of G, the last inequality holds for all 
translates of g, so ||g * P||OO< 1 — 8. There is a trigonometric polynomial 
P such that P = l on the support of ƒ and | | P | | i < l + S [3, Theorem 
2.6.8]. Define /A = P * J > . Then supp ACsupp P, ƒ * /x=/ * v, and for 
every g GQ, 

Ik * MIU = h * v * P\U ^ h * "lUklli < i - s2. 
PROOF OF LEMMA 2. There is a trigonometric polynomial P G C s 

such that | |p||oo<l and P = / o n E. Let {71, • • • , 7*} be the support 
of P, choose 7oG2 so that — 7o€£2, let A be the subgroup of T gener­
ated by E and 70, 7i> • • • > 7k, put 5 = A H S , choose <j> and s0 as in 
Lemma 3. Since E is finite, there is a positive integer iV such that 
N><t>(y) for every 7 G E . Define 

¥(*) = (*, i\^0 + 71 + * • • + 7*) (* G G). 

Then ^ G C s and ^ P G C s . Define 

g = (P - ¥ ) / ( l - * 7 ) . 

Then |g | = 1 on G, g G C s C C s , and 
00 

g - p = - * + £ (*P)»(p - *). 
n==l 

If 7 'GA is such that some term on the right has its Fourier coefficient 
7^0 at 7 ' , our choice of ¥ implies that <l>(y')}àN><l>(y) for every 
7 G £ . Thus 7 ' $ E , and £ = P on £ . 

PROOF OF LEMMA 3. Assume 0£:S, without loss of generality. A is 
(isomorphic to) the direct sum of some Zn and a finite abelian group 
F. For (p, / )GA, where pE;Zn, fEF, define w(p9 f)=p, and put 
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So = wS. Then So is a semigroup in Zn . I claim that So is not a group. 
For otherwise there would correspond to each x = (ƒ>,ƒ) G S an element 
y = (—£,ƒ') £ 5 ; if ay b are the orders of/, ƒ and if z — (aô — l)x+aby, 
then sG,S and z + # = 0. So S would be a group, contradicting the 
hypothesis. 

We may assume that n is so small that S0 lies in no subgroup of Zn 

whose rank is less than n. Regard Zn as the subset of euclidean space 
Rn whose points have only integer coordinates. Let H be the smallest 
convex set in Rn which contains So. Choose p £ S o such that — p^S0. 
If — p were in H, one can see that —p would be representable as a 
convex combination of points of So, with rational coefficients, so that 
some positive integral multiple of — p would be in S0; the semigroup 
property of So then implies that — £ £ S o , a contradiction. Thus 
H^R\ 

Since H is a semigroup it follows that H contains no neighborhood 
of 0. Hence 0 is a boundary point of H, and there is a hyperplane II 
in Rn such that 0 £ I I and H lies in one of the two closed half-spaces 
determined by II. Our choice of n shows that So is not a subset of II. 
Hence there is a linear functional <f>\ on Rn which has II for its null-
space and which is 1 at some point of So. Then <t> =#i7r has the desired 
properties. 

REMARK. With G=Tn and S the positive cone in Zn , the theorem 
extends Fisher's result to the poly disc algebras [4]. 
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