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Introduction. The proofs given in §§1 and 2 of this note were con­
tained in a letter from the present writer to G. Lumer, sent shortly 
after the appearance of [ l ] . The subsequent appearance of [2] makes 
it desirable to publish these demonstrations. In [3] we mention an 
observation relevant to the topic of [2]. 

1. On [ l ] . [ l ] consists primarily of the proof of the following 
lemma and an addendum. Let T be any selfadjoint operator in 3C, a 
Hubert space, *y a closed subspace in 3C, P the orthogonal projection 
of 3C onto yj x==cy"L» the orthogonal complement of <y in 3C. Let 
To = PTP. 

LEMMA 1. If x is finite dimensional, then T0 is selfadjoint. 

OUR PROOF. £>(r0) = £>(TP) is dense by [3, Theorem IV 2.7(iv), 
p. 103; note £>(T) dense is the only property of T used in (iv)]. Any 
time £>(rP) is dense, ( r 0 ) * = [P(TP)]* = (TP)* P^PTP = T0, and 
To is selfadjoint iff {TP)*=PT iff PT is closed, the latter implication 
seen from (TP)*=(T*P*)* = (PT)**^PT, equality holding iff P r i s 
closed. But PT is closed by [3, Theorem IV 2.7(i)]. 

The addendum of [ l ] asserts that a remark credited to G. Lumer 
in the acknowledgment of [4] is incorrect. However, the remark is 
correct in the context of bounded operators, which clearly was the 
context intended by Williams [4]. In that context, T0 — ATA is 
obviously selfadjoint whenever A and T are. 

2. On [2]. Let S and T be densely defined closed linear operators 
in 3C; [2] deals with the interesting question of when (TS)* = S*T* 
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is true beyond the well-known case where T is bounded and every­
where denned, and adopting the ideas of [ l ] the following results are 
stated (proofs deferred to a detailed paper to be submitted else­
where). 

THEOREM. If T is a closed domain dense linear operator on 3C, and 
S is a bounded everywhere defined linear operator whose image is a closed 
subspace of finite codimension in 3C, then (TS)* = S*T*. 

COROLLARY. If S and T are selfadjointt and if S is bounded, has a 
closed image, and has finite dimensional kernel, then STS is self adjoint. 

OUR PROOFS. The corollary is a special case of the theorem; alter­
nately, replace P by S in the above proof. For the theorem £)(TS) 
is dense as above, and ( r S ) * = ( r * * S * * ) * = [ (5*r*)*]*H(5*r*)** 
2 S * r * , equality holding iff S*T* is closed. But the latter is true by 
[3, Theorem IV 2.7(i)]. 

3. On when (TS)* = S*T*. I t should be observed, without further 
elaboration, that the question of [2 ] has a fairly general answer via 
the Fredholm theory (e.g., see [3]). 

PROPOSITION 1. If Tand S are Fredholm operators, then (TS) * = S*T*. 

PROOF. Let K denote the index of an operator. Since (TS)*^>S*T*, 
it is sufficient to demonstrate that K((TS)*) = K(S*T*). By the 
Fredholm theory, one has K((TS)*) = -K(TS) = -K(T) -K(S) = K(T*) 
+K(S*)=K(S*T*). 

ADDITIONAL REMARK. We have found that Proposition 1, with T 
just closed, was shown in [5]; see also [6, Lemma 2.3]. Accordingly 
we state: 

PROPOSITION 2. Let T and S be densely defined linear operators in a 
Hilbert space. If S is closed and R(S) has finite codimension, then 

(rs)*=s*r*. 
PROOF. AS in [5, Lemma 4.1]. More specifically: T closed is not 

needed (e.g., by referring to [3]); N(S) and R(S) closed are implied 
by the hypotheses; dim N(S) need not be finite; and the bound 
[5, (4.3)] holds when 5 and R(S) are closed. 

Further ramifications are conceivable (e.g., assume a little more 
on T, a little less on S), as well as extensions to normed linear spaces, 
etc. On the other hand, Proposition 2 is rather sharp for arbitrary T 
in that the conditions on S are those generally required both to 
conclude that (TS)* exists and that S*T* is closed. 
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