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1. Introduction. This note is concerned with the boundary value 
problem BVP for the equation 

(1) Au + eu = 0 (x G ft) 

under the boundary condition u\ aa = 0, and also with the initial value 
problem IVP for the equation 

(2) dv/dt = Av + ev ( / a O , « G u ) 

under the initial condition v\t^=ia{x) and the boundary condition 
fl|dQ = 0. Here Q is a bounded domain in Rm whose boundary dQ is 
assumed to be sufficiently smooth. 

We assume that a = a(x) continuous in S. As I. M. Gel'fand [2] 
pointed out, these problems arise in the theory of thermal self-
ignition of a chemically active mixture of gases in a vessel. He 
showed, in the special case where Q is an m-dimensional ball of radius 
r, that for m = 1 or 2 there exists a critical radius rc such that BVP has 
two solutions, one solution or no solution, according as 0 <r <rc, r = rc 

or r>rc. If m = 3, then the number of solutions of BVP can be 0, 1, 
2, • • • , or oo, depending on r. I t would be quite interesting to extend 
Gel'fand's result to the case of general Q. However, we do not try to 
proceed in this direction. Instead, our main objective is to prove a 
certain relationship among solutions of BVP when they exist and to 
study the asymptotic stability of these solutions, i.e., the convergence 
of solutions of IVP to solutions of BVP as t—»+<*>. Below we de­
scribe some of our results. The other results and technical details will 
be published elsewhere together with generalizations including re­
placement of the function eu by a general function ƒ =f(u); i?1—»i?x 

which is smooth, positive, increasing, and strictly convex. The author 
wishes to thank Professor Melvyn Berger who brought the author's 
attention to the present problem and provided the author with help­
ful preliminary information. 

1 During the period of preparation for the present paper, the author was partly 
supported as a Visiting Member at the Courant Institute of Mathematical Sciences, 
by the National Science Foundation, Grant NSF-GP-8114. 
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2. Notation and results. By a solution of BVP we mean a smooth 
classical solution. Denote the totality of solutions of BVP by S = S(Ù). 
Let F be a nonlinear integral operator acting on bounded functions 
defined by 

(Pu)(x) = f G(x, y)e»Wdy (x G Ö), 

where G is the Green function of —A in fi under the Dirichlet bound­
ary condition. A bounded function u belongs to 5 if and only if it 
satisfies the integral equation u = Fu in Q. We need some symbols 
concerning order relations between two functions v and w defined in 
S. We write »g«/ (xGS) or simply v^w if v(x)^w(x) for all # £ 0 . 
v<£w(xÇzQ) or simply v<£w means that yp S w— *>(#£&) for some posi­
tive number y, p(x) being the distance from x to ôfi. Finally, we write 
vf^w if v(xo)9£w(xo) for some XoEH. For instance, if v^w, v^w and 
v, îe;£5, then we have v<£w by the maximum principle of E. Hopf 
[3] (cf. [l, p. 328]). A function u £ S is called the minimum solution 
of BVP if u^v for any vÇ£S. The minimum solution is unique if it 
exists. We are ready to state theorems. 

THEOREM 1. (i) Let X0 be the smallest eigenvalue of —A under the 
Dirichlet boundary condition. If \o<e, then S is empty. That is, there 
is no solution of B VP if Q is sufficiently large. 

(ii) There exists a positive number lm depending on the dimension m 
such that S is not empty if the diameter of fl is less than lm. 

THEOREM 2. If Sis not empty, then there exists the minimum solution. 

THEOREM 3. If S is empty, then the solution v of IVP blows up in a 
finite time or diverges to +00 as t—>+ 00 in the sense that \\v(t, «)||c 
—»+ 00 (t-*+ 00), where \\ \\c denotes the maximum norm over Ü. 

THEOREM 4. Suppose that S is not empty and let u be the minimum 
solution. If a^u, then the solution v of IVP converges uniformly to u as 
*->+oo. 

THEOREM 5. Let u and v be in S. If u^v and uf£v (hence, automati­
cally u<£u), then u is the minimum solution. In other words, there cannot 
be a triple Ui (i = 1, 2, 3) of solutions £ S with U\<^UI<£M%. 

THEOREM 6. Suppose that B VP has solutions more than one. Let u 
be the minimum solution and let </> be any solution different from u. Then 
(i) and (ii) hold. 

(i) If <j>^a and (frf^a, then the solution v of I VP blows up in a finite 
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time or diverges to + oo as J—»+ oo in the sense mentioned in Theorem 3. 
(ii) Ifa^<j> and a^<j>, then v converges uniformly to u as /—»+ oo. 

REMARK 7. From Theorems 4 and 6 we see the following. Any 
solution of BVP other than the minimum one is unstable. The mini­
mum solution is always stable from below and is stable from above 
provided that there exists another solution. As a matter of fact, the 
stability of the minimum solution from above when it is the only 
solution depends on circumstances which are too complicated to be 
given here. 

3. Outline of the proofs. We give brief indications of proof for 
preceding theorems. 

Theorem 1. (i) Let <£0 be the eigenfunction of —A associated with 
the eigenvalue X0. We may assume that <t>o(x)>0(xS^) and (<£o, 1) 
= 1, where ( , ) means the inner product in Z,2(fl). Form the inner 
product of <f>o and each side of (1). Then by means of Jensen's 
inequality we obtain —Xo/+e J ĝO for J = (0o> w), which is impossible 
if \0<e. 

(ii) Application of Schauder's fixed point theorem. 
Theorem 2. Functions {un} defined by the iteration un+i = Fun 

(tt = 0, 1, • • • ) and w0 = 0 forms an increasing sequence. un does not 
exceed any 0 £ S if S is not empty. Thus un converges and the limit 
is the minimum solution. 

Theorem 3. For simplicity we assume 0:ga. Then it is enough to 
consider the special case a = 0. In this case, v(t, x) is increasing in t for 
each x, for we can prove w=vt is positive everywhere. In fact, w is 
equal to AO+0° = 1 at / = 0, W\OQ = 0 for 2>0, and the equation wt 

=Aw+evw is satisfied. Thus v(t, x) converges to some u(x) as t—>+ oo 
for each x if v is bounded by a constant. This limit u satisfies u = Fu 
which follows from 

v(t, x) = I ds j U(s, x, y)ev<t~ff>v)dy 

by making t—>+ <x>, where U is the Green function of the heat equa­
tion. 

Theorem 4. For simplicity we assume Org a. Then Orgafgu. Let v0 

be the solution of IVP for a = 0. I t is enough to show v0 tends to u. 
As above, v0 increases to some w G 5 a s t—»oo. However, u must coin­
cide with u since u is the minimum solution. 

Theorem 5. First we note the following 

LEMMA 8. Let <j>> ypÇzS and suppose that 0<<C .̂ Then (i) and (ii) hold. 
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(i) Let a be a number with 0 < a < l . Then {vn} defined by vn+i 
= Fvn (» = 0, 1, • • • ) and v0 = (l—a)<t>+o^/ forms a decreasing se­
quence. 

(ii) Let 0 be a positive number. Then {wn} defined by wn+i = Fwn 

(w = 0, 1, • • • ) and wo = ( l+j8)^ — j3<£ forms an increasing sequence. 

This lemma can be established as follows. 
(i) Since F is monotone with respect to the order relation ^ , it is 

enough to show fli^flo. By the convexity of eu we have ed-«)*+«* 
^S(l — a)e+-\-ae*. Applying the integral operator with the kernel 
G(x> y) to both sides of this inequality, we obtain Vi^v0 noting 
<t> = F<t> and\f/-=F\f/. 

(ii) can be established similarly. 
Now coming back to Theorem 5, suppose that Ui (i = l, 2, 3) are 

those mentioned at the end of the statement. Then by means of 
Lemma 8 we can prove that there exist an infinite number of solutions 
0yG5 between W2 and Uz such that </>j lie densely in an upper neighbor­
hood of U2 in a certain way. On the other hand, existence of such 0/ is 
shown to be impossible with the aid of some theorems concerning 
perturbation of eigenvalues (cf. [4]). 

Theorem 6. We just say the following as a hint for proof of (i). If a 
is equal to (1 +/3)<£— /3u for some j3>0, then by the convexity of eu we 
have Vt=zAa+ea^0 a t t = 0 since <j>, u £ S . From this we can prove 
vt^0 everywhere. Thus v is increasing in t and converges to some 
w £ 5 if v is bounded. Then we should have u<3C0<3Cw which contra­
dicts Theorem 5. 
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