
A SIMPLE MODEL OF THE DERIVATION OF FLUID 
MECHANICS FROM THE BOLTZMANN EQUATION1 

BY H. P. McKEAN, JR. 

1. Introduction. Numerous problems arising from nature can be 
described by a (possibly nonlinear) parabolic equation of the form 

(la) dp/dt = Q[p] (t > 0), 

(lb) l i ,m/»=/ . 

Q is independent of / > 0 and maps a f unction ƒ belonging to a certain 
manifold M into a tangent vector Q [f] based at ƒ, so that the flow 
defined by (1) is a flow on M. 

Now it may happen that the solutions of (1) come rapidly close to 
a special submanifold H in which a striking simplification takes place: 
namely, the amount of information needed to distinguish points of 
H is suddenly much smaller than in the ambient manifold Af, and 
owing to this simplification of the function space, the flow defined 
by (1) can be described much more simply. This phenomenon is 
familiar to students of statistical mechanics, notably in the passage 
pass from Boltzmann's equation to hydrodynamics via the Chapman-
Enskog expansion; see, for instance, Ford-Uhlenbeck [2]. 

I will speak about 3 examples of this state of affairs. The first is 
due to Carleman [l, p. 106]. He attaches no particular significance 
to it, but it is cute and illustrates some of the ideas involved. The 
second example is the actual Chapman-Enskog-Hilbert development 
for the Boltzmann equation, or at least a conjecture as to how it 
should go; see §3 below. Boltzmann's equation is too complicated to 
prove very much about, but in the simplified model of §4 it is possible 
to compute everything and to see explicitly all the phenomena that 
the Boltzmann equation is supposed to exhibit.2 Grad [3] discussed 
the Chapman-Enskog-Hilbert development for the linear approxima­
tion to the Boltzmann equation. This is still very complicated, so 
naturally the results are less satisfactory. 

2. Carleman's example. Carleman, in his study of the Boltzmann 
equation [ l ] , used the problem 

1 An address delivered before the New York meeting of the Society by invitation 
of the Committee to Select Hour Speakers for Eastern Sectional Meetings, April 12, 
1968; received by the editors September 20, 1968, 

2 This material is taken from McKean [6], 

1 
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(1) £ = (x)2 - x2 

to illustrate the ideas involved in the Chapman-Enskog-Hilbert 
development. 

Replace (1) by the coupled pair 

and let M=R2 be the associated phase plane. The special submanifold 
H is now singled out by means of the following curious recipe: put an 
extra factor 1/e in front of Q and ask that the solution be a (formal) power 
series in e; then put e back = l and hope f or convergence to a bona fide 
solution of (2). This is plainly a very radical thing to do: e is put in 
upside down and comes out right-side up, esp.t to avoid poles and 
worse, the coefficients of this (formal) power series must satisfy a 
whole string of identities whose significance is not at all apparent! 
Naturally, (2) may not have any solutions of this type. 

Hope for the best, insert the 1/e into (2), and ask for a formal power 
series solution x = Xo+exi+ • • • . This gives 

(3) xn-i = ]C [%&> — x&j] (n = 0) 

with the understanding that #_i = 0. (3) can be solved step-wise, 
beginning with £_i==0==(#o)2 "-#<). The only reasonable solution is 
#o = constant Xexp(±/ ) , and you can go on step by step. Carleman 
pointed out an easier way. Under the substitution x—>ea and (x)2—»e26, 
the problem becomes 

(4) b = sd(6 - a2), 

and it is easy to guess a first integral of this: 

(5) b = a2 + a + 1/2. 

Now x is supposed to be a formal power series, so a and b should be 
formal Laurent series: 

(6) a = <L-I/€ + a0 + • • • , b = b^/ê + ô_i/e + bQ + • • • . 

(5) is consistent with this, and it is not difficult to check that (5) is 
the only possible first integral in the domain of formal Laurent series. 
Going back to x and x and putting e = l, one finds the special first 
integral 

(7) (x)2 = x2 + x + 1/2 « (x + 1/2)2 + 1/4. 
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This corresponds to the 2 dark hyperbolas, labelled k = 0 in the dia-

/ 

- \ <K<0 

gram, comprising the desired submanifold H. The other solutions 
may be found from the general first integral: 

(8) (a)2 - ke** + x* + x + 1/2 ( - 00 < k < oo), 

and one notices with satisfaction that every solution approaches H 
either for / Î 00 or for t \ — 00. (1) is replaced in H by the simpler 
problem 

(9) x = ± ((* + 1/2)2 + 1 / 4 ) i /2 

which can be solved explicitly. As an unexpected bonus, you find that 
H separates the solutions which cross the real line from those which 
do not. I do not want to attribute any deep significance to this ex­
ample, but you see that the power series trick has singled out a par­
ticularly nice solution! 

3. Boltzmann to hydrodynamics via the Chapman-Enskog expan­
sion. Boltzmann's equation 

(i) dA+v.
d2+f.d2=sB[P<S)p] 

dt ax dv 

is supposed to govern the distribution pdv of the velocity »£ i? 3 of a 
typical molecule in its dependence upon time t^O and position JCG-R8. 



4 H. P. McKEAN, JR. [January 

The left-hand side is a streaming term, d/dx is the spatial gradient, 
d/dv is the velocity gradient, and f is the external field. B =B \p®p] 
accounts for the change due to collisions between molecules. I t is of 
degree 2 in p as the notation suggests, though its precise expression 
need not bother us. Hubert [4] proposed to identify fluid mechanics 
with the (formal) power series solutions of 

dp dp dp _ 

(2) S+v.JL + lS = €-iB[p®p], 
dt dx dv 

putting € back = 1 and hoping for convergence. A rough idea of what 
he had in mind can be obtained as follows. 

Application of the recipe to the formal power series solution 
p=po+epi+ • • • leads at once to the rule 

+ v + f ) pn^ « £ B\pi ® PJ] (» ^ 0) 
dt dx dv/ i+j=n 

with the understanding that £_i = 0. At the stage n = Q, (3) says that 
0 = B [po®po]. This happens only if p0 is a local Maxwellian distribu­
tion, meaning that po = co exp( — c2|^—Ci\2). (c0l ci, c 2 ) £ ^ 5 is the 
hydrodynamical state. I t depends upon the 5 moments fvnpodv (w=»0, 
1, 2) only and is a function of (/, x)G[0, co)Xi?3. The local Max­
wellian form signifies a (local) steady state as regards collisions, and 
the formal power series p is an expansion around this state. 

At the next stage, you begin to get some useful information. (3) can 
be expressed as 

(4) + v. + f . - W n - x - Z B[pi ® PJ] = C[pn], 
dt dx dv/ i,j*o,n 

in which C\f] «B[po®f]-\-B\f®p0] is a nice selfadjoint integral 
operator acting in an appropriate Hubert space. Given p0, • • • , pn-i, 
this is an integral equation for pn, and to solve it you have to obey the 
dictates of the Fredholm alternative: you must make the left-side 
perpendicular to the null-space of C. Now the null-space of C is very 
simple. I t is just the S-dimensional subspace spanned by vnp0 (n 
= 0, 1, 2), and if you make the left side of (4) perpendicular to it, you 
will get some new information about po, • • • , pn-i- At the stage n = 1, 
this is information about the hydrodynamical state of p0f and if you 
interpret this state in terms of density, fluid velocity, and tempera­
ture, you get the Eulerian hydrodynamical equations. 

Now having satisfied the Eulerian equations, you can go on and 
solve (4) with n » 1 for pi. You will not get the whole of pu only the 
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part that is perpendicular to the null-space of C, so you still have a 
S-dimensional piece to specify, and that is done by imposing the 
Fredholm alternative at the next stage (w = 2). This gives information 
on the hydrodynamical state of the next approximation po+epu and 
what you find is the Navier-Stokes equations which constitute the 
conventional basis for viscous fluid mechanics. Now you solve (4) for 
the part of pi which is perpendicular to the null-space of C and impose 
the Fredholm alternative at the next stage (w — 3), obtaining equa­
tions for the hydrodynamical state of po+ePi+e2p2; these turn out to 
be a big mess. Eventually, you get the whole formal power series 
p~po+epi+ • • • and what may be called the correct hydrodynami­
cal equations. Putting e back = 1 , you hope that everything will 
converge and single out a nice submanifold H inside the manifold 
M. On the hydrodynamical equations define the same flow as the 
(more complicated) Boltzmann equation does. This submanifold is 
distinguished by the fact that ƒ £UT can be recovered from its 5 hydro­
dynamical moments fvnfdv (w = 0, 1, 2), so that to specify a solution 
curve in H you have only to give these moments at time t = 0. This is 
what Ford-Uhlenbeck [2 ] call the Hubert paradox. The (very compli­
cated) formula which expresses ƒ £ i ? in terms of its 5 moments is the 
so-called Chapman-Enskog expansion. 

The situation is recapitulated in the lower half of the accompanying 
diagram. This half of the diagram is commutative. The upper half 
has to do with the approximation of the general solution p* of the 

BOLTZMANN 
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Boltzmann equation by one of these hydrodynamical solutions p. 
I am not sure how widely this next statement will be believed among 
physicists, but it is correct in simplified models, and hopefully so in 
general, that there is (a nonlinear) projection onto the submanifold H 
which commutes with the Boltzmann flow, as indicated in the dia­
gram, such that the general solution ƒ>* and its projection p come 
rapidly close to one another. Consequently, for all practical purposes, 
£* can be replaced first by p and then by fvnpdv (w = 0, 1, 2) which is 
a much simpler affair. This is what Ford-Uhlenbeck [2] call a con­
traction of the description. 

Boltzmann's equation is too complicated to permit us to check all 
this at the present stage of the mathematical art, so it is comforting 
to see all the conjectured behavior appearing explicitly in the simplified 
model of the next section. 

4. A simpler model.3 The simplified model cited above is based on 

(1) dp/dt + edp/dx = p(-e) - p(+e) = D[p]. 

Here e, which is a velocity, is simply ±ltx runs over R1 instead of Rz
t 

the external field f is absent, and the collision term is merely linear. 
Naturally, p is a function of (/, x, e) G [O, <» ) XR1 X (± 1), but mostly 
I will write p=*p(e) as in (1). This problem governs the distribution 
of a particle moving on the line according to the rule x = ± 1 with 
independent exponential holding times between changes of velocity 
[±1—*-Fl]; see Kac [S]. Using this model, it is easy to write down 
the solution of (1) and to check that if f==\imtiop belongs 
to C"[RlX(±l)]9 then pGC»[[0, oo)XR1X(±l)]; naturally, the 
solution is positive if ƒ is positive. (1) is connected with the telegraph 
equation, and it will be important to know this later on. To see this, 
you compute d2p/dt2 from (1) and obtain 

(2) d*p/dP + 2dp/dt = d*p/dx\ 

The important feature of (2) is that e has dropped out! But a price is 
paid for this in that the initial data has to be augmented by the 
knowledge of 

(3) lim dp/dt = -ef + D[f]. 
do 

I am going to play Hilbert's trick on this, looking for formal power 
series solutions of 

(4) dp/dt + edp/dx = €-lD\p], 

» McKean [6] gives full proofs of all the statements in this section. 
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putting e back = 1 and hoping for the best. Put the formal power 
series p=po+cpi+ • • • into (4) and match like powers. This gives 

(5) (d/dt + ed/dxlpn-i = D[pn] (n è 0) 

with the usual understanding that />_ISE0. The first thing you notice 
is that Z)|i>o] =£o(—e)—po(+e) = 0, which says that p0 is an even 
function of e, i.e., it is independent of e. Now at the next stage (n = 1), 
the dictates of the Fredholm alternative must be satisfied. The null-
space of D is simply the even functions of e, so the left side of (5) 
[(d/dt+ed/dx)po] must be odd. But p0 is even, so you must have 

(6) dpo/dt = 0, 

i.e., po is independent of/ ^ 0 also. This fact, trivial as it may be, is the 
analogue of the Eulerian equations. (5) can now be solved for the odd 
part of pi. Then you go to (5) for w = 2 and impose the Fredholm 
alternative which says that (d/dt+ed/dx)pi must be odd. This gives 
the whole of pi9 

(7) ( f c ) - = ~ (e/2)f0> (Pùeven = (flUn + ( l / 2 ) ( f t " , 

and you should be able to see in this some counterpart to the Navier-
Stokes equations. The analogue of the hydrodynamical state is just 
p( — l)+p(+l), so you have to find some equation for (po+epi)( — 1) 
+ (po+epi)(+l) which is valid modulo €2. This is simply the heat 
equation, as is plain from (6), (7), and 

(8) W - T ^ ) ^ + ^) = ^T-T-^ + termsine2-
To go beyond this point, the use of (5) is inefficient, so I shall 

simply state the facts and prove them by a better method based on 
the telegraph equation (2). 

THEOREM. Given a formal power series f =fo+efi+ • • • with coeffi­
cients from 0°[R1X(±1)]9 (4) admits a formal power series solution 
P=po+epi+ - - • with coefficients from C80[[0,oo)XJR1X(±l)] 
which reduces tofatt = 0+if and only if* 

(9) -e(f)M = [(1 + W * - l](ed)-i(f)even; 

4 d stands for spatial differentiation, and the radical is to be expanded according 
to the binomial formula. 
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moreover, {p)0dd and (p)even are related in the same manner at each later 
time t^O, and 

(10) — = e-^fl + €2a2)^2 - l]p 
dt 

in addition to (4), esp., 

(11) — (P)„en = «-X[(l + M*)"* - 1](^U„. 
dt 

REMARK. 2(p)even is the hydrodynamical state. Hubert 's paradox 
is seen in the fact that the even part of ƒ determines the whole solu­
tion. (9) is the Chapman-Enskog expansion, defining the hydro-
dynamical submanifold H. (11) is the full hydrodynamical equation; 
the right-hand side of (11) reduces to (e/2)d2/dx2 in the second ap­
proximation, as it should. 

PROOF. The principal trick is to notice that the telegraph equation 
associated with (4) [d2p/dt2+(2/e)dp/dt = d2p/dx2] can be factored: 

/ a i + (i + *2<92)1/2\ /e i - (i + e*d2y'2\ 

The second factor maps the formal power series p into a new formal 
power series, while the only formal power series that the first factor 
annihilates is 0 itself. This proves (10), and (9) follows by comparing 
the expressions for dp/dt at / = 0 obtained from (10) and from (4). 
The rest is trivial. 

The next topic is the question of convergence; for this part it is 
natural to take (ƒ)even—j*o (i.e., to drop the higher powers) since one 
puts e = 1 eventually. The formal power series (f)0dd is now computed 
from (9), and you find that it converges for \e\ < 1 iff/o admits an 
integral extension into the complex plane which is of exponential type 
g* 1; moreover, p follows suit if this condition is satisfied, i.e., it also 
converges for | e| < 1 . This point is to be emphasized: to obtain conver­
gence of the formal power series, the initial datum has to be very smooth. 

I now impose an additional condition just to simplify life: 
|J(f)«>en||i< °°- This is not unnatural since, if if) even is positive, this 
integral is the total amount of "fluid." Because (f)even is also of expo­
nential type gjl, its Fourier transform vanishes outside [ — 1, + l ] , 
so that 

ç +i 
(13a) (f)even = I exp(iyx) (j)*v*ndy 
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and 

(13b) (J)M = ƒ exp(t7*)(-*/*Y€)[(l - *V) 1 / 2 - l ] ( / W y 

by (9), esp., you see from ^13b) that (f)0dd is actually continuous on 
the closed disc | e\ ^ 1. ƒ itself can now be computed and a formula for 
£ deduced from (10) : 

exp(iyx) exp[*(l - €272)1/2 - l/«]/*y. 

This is a bonafide infinitely differentiable solution of (4) even for € — 1. 
Now put € = 1 and let us take up the question of the degree of 

approximation of the general solution p* of (1) by such special hydro-
dynamical solutions. Pick the initial datum/* of p* from L1 [R1 X ( ± 1) ] 
and map it into a new function ƒ by the rule 

1 r 1 + D- iyel . . . 
(15) ƒ » — 1 + L ƒ„ for Y S I , 
v y ^ 2 L (1 — 72)1/2 J i n - . 

= 0 for I T I > 1. 
This mapping is a projection, it commutes with solving (1), ƒ satisfies 
(9) (i.e.y the mapping is projection onto H), and the corresponding 
solution p of (1), given by (14) with e = l, differs from p* by a tran­
sient that washes out like e~\ all as it should be. The proof is not at 
all hard, and I will not bother you with it. 

A final point I want you to notice is that the physical picture 
demands that p be positive. (10) preserves this property inside H but 
not outside. This is because (10) is the same as (1) inside H but not 
outside. 

5. Carleman's model. The problem (1) of §4 has the undesirable 
property that the collision term is linear. Carleman [l, p. 104] pro­
posed an allied model that is a little closer to the Boltzmann equation: 

(1) dp/dt + edp/dx = D[p2] 

for which you can imitate part of the formal power series stuff of §4. 
A Chapman-Enskog expansion 

(2) -e(fM) = E[(f)even] 

exists, E being a mapping of formal power series, and this expansion 
commutes with the flow induced by (1), so that you can substitute 
—e(p)ûdd = E[(p)even] into (1) and see what happens. This gives 
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(3) (i - dE,y\f] = e-y x E[f\ 
for any even formal power series/, dE/ being the (formal) differential 
of E at the place/. Unfortunately, (1 —dE/)2 is evaluated only in the 
special direction ƒ', so (3) is probably not easy to solve; in any case, it 
seems to be a novel kind of problem. The question of the convergence 
of such expansions is wide open. 

Note added during the editing. A few additional (linear) models, 
such as the 3-dimensional Lorentz and Krook models, have recently 
been treated along the lines of §4 by E. Hauge, J. van Leeuven, and 
myself [unpublished]; in fact, with this additional experience, the 
linear approximation to the Boltzmann equation now seems to be 
within the realm of possibility, but this is not yet done, and the diffi­
culties look formidable. 
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