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1. In this note we state some results on existence, uniqueness, and
a priori estimates, which have been obtained with parabolic singular
integral operators as a main tool.

Let Lu’(x’ Y, t)= Elals% a.,(x, Y, t)D:.u'u‘(x7 Y, t)"'Dtu'(xr Ys t)’
where xER", y>0, 0<t<T. Here a=(ay, * * *, 0ut1), =0 is an
integer, |a| =a1+ -+ - +atat1, DI, =0191/0x - - - dxinit, D, =9/t

(1.1) DEeriNiTION. For 620, £8®(R*X (8, «)X (0, T)) is the
closure of Co®(R**+1X (0, «)) with respect to the norm Hu” = EMS%
|| D2 || 27 +|| Dsu|| i where the Lr-norms are taken over R X (8, «)
X (01 T)' '

(1.2) THEOREM. Let L be uniformly parabolic in the Petrowsky sense.
Assume that the coefficients, a4, of L are bounded and measurable for
|a| <20 and for |a|=2b, uniformly Hilder continuous in R+
X [0, T]. For 1<p< o there exists a function u(x, v, t) satisfying

(1.3) for each 6>0, u & L£3®2(R*X (8, ©)X (0, T)) and Lu=0 in
RYIX(0, T)

(1.4) Dit’u(x, 0, t)=¢;(x, t) in the sense of £5_,_,_,(Sr) where
Sr=R*X (0, T), j=0, - - -, b—1, and I is a fixed number satisfying
0<I<b. (1.4) means ||Di*u(-, y, -)——¢,~||,g§,,_1T,_,(sT)—>O as y—0t.

In §3 we define ££(Sr) and characterize it in terms of spatial deriva-
tives of order <k and a (fractional) time derivative of order %/2b
belonging to L?(Sr). We observe that for /=0 and for /=5 Theorem
(1.2) is an existence and uniqueness theorem respectively for the
Dirichlet and Neumann problems.

We will later state an extension of Theorem (1.2) by replacing (1.4)
with a system {Bj} of boundary operators

Bi(x; 3 Da,y) = Zba'-ﬂ(w.t)D:,w 1 éf = b) 0= 4] =2p—1.
181575
(1.5) DerFINITION. If 2 <2b is an integer, 0 <6y, <1, a function b
defined on Sy is in the class C(k+8,, k/2b+38,) if for some C>0,
(i) for Ioel <k, D2b is bounded, uniformly continuous in Sr;
(i) for |a| =k, | Db(x, £) —D2b(z, )| <C|x—2|%;
(iii) |b(x, &) —b(x, s)| SC|t—s| ®2r+a,
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(1.6) DEFINITION. {B;} covers L if for some 8o>0, Bo>0 and for
H(z, s; %, 7)

0 . . N
= det(l x| — iT)(ﬂb—i—fk)I%ka(z’ $5 — i, —&) (i)’ ld{)
A(z, 0, s; 4%, 4¢) + it

amn

(i) H(z s; x, 7)#0 when Im 7> -—6o|x| % (x, 7)#0,
(ii) ]H(z, s; x, -r)| =By>0 for -—6o|x|2b<1m 7=0,

where Bldenotesthe principal part of Bi,and witha’ = (ay, * + -, &ts, 0),
(18) A(xa 9, & 1§, '“7) = Z a’d(x: Y, t) ('ig)a,(iﬂ)a”ﬂ-
| o) ==2b

The contour integrals are taken over a closed curve lying in the lower
half {-plane, enclosing all roots { of A(z, 0, s; 7%, ) +4r =0 lying
there. H(z, s; x, 7) is the symbol of the matrix of parabolic singular
integral operators corresponding to the system {B;}, relative to L.

(1.9) TueorREM (EXISTENCE). If the system {B;} covers L in (1.2),
and byg is uniformly continuous if r, =2b—1, while bis EC(2b —1 —r,+¢,
(2b—1—r,+¢€)/2b) if r,<2b—1, then (1.2) holds with (1.4) replaced by
(1.4)" Bj(x, t; Dsy)u(x, 0, t)=¢;(x, t) in the sense of £5_,-,(Sr),
1=j=0b.

(1.10) TarorEM (UNiQUENEss). If L, {B;} are as in (1.9) and
Y EC*(RrHY) is nonnegative and equals (lxl 24 y2)12 for lxl 24y22>1,
then the conditions

1) u(x,y, t)e—cv@n c L2PI(RrX (8, ©) X (0, T)) for some c20 and
each 6>0,

(ii) Lu=0,xER", y>0, 0<t<T,

(iii) (Biu)e~¥—0 in £5,_;_, as y—0%,
imply that u(x, y, £) =0 for y>0.

Finally we state an a priori estimate for functions in £§®!
-(R*X (0, ©)X (0, T)) with 1<p< » and p#2b-+1. This was done
for p=2 by Agranovic and Visik in [1] and for p large enough by
Solonnikov in [8].

(1.11) DEFINITION. B%*(Sr) is the closure of Cg’ (R%") in the norm

» dh
”f“Bp,a(sT) = “f”LP(ST) + <fR"”f( + h, -)"' f”LP(sT)| hlﬂ+“p)1/p

+ (fmffo«,H_KT |f(x, : l_; |h1)-l»;/i(x’ ) IP dtdh dx)”p.
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(1.12) TuroreM. If the L, {B;} of (1.2), (1.9) have respectively
coefficients a. bounded and measurable for | a| <2b, uniformly continu-
ous in Sy for ]al =2b, and coefficients bg, in CQRb—r,—(1/p)+e,
2b—r,—(1/p) +€)/2b) on R*X [0, T], with in addition, for some c>0,

| Debpa(x, ) — Dabu(s, )| < o t — s|a=amtara

then there exists u, 0<u =T, depending on the bounds of the coefficients
of L, the modulus of continuity of a, for |a| =2b, and the parameter of
parabolicity, such that for p#=2b+1, 1<p< o we have for each
uELL* (R X (0, »)X (0, 7)),

|l @t o S CllLu|| 27 @2 w0

b
+ 2 [[A2=nByu(-, 0, )| Bpi-amisn;

k=1
A%=1-1% g5 defined in §3.
2. A parabolic simgular integral operator (p.s.i.o.) has the form

Sf(x, t) = a(x, )f(x, 1)

(2.1)
t—e
+ L7 — lim K(x,t; 0 — 2,t — 5)f(z, s)dzds + Jf(=, 1),
e=pd o R"
where

(i) a(x, t) is bounded and uniformly continuous,

(ii) K(x, ¢; 2, s)=0 for s<0, K(x, t; Nz, N%s) =N""2K (x, ¢; 2, )
for A>0, [»K(x, t; 3, 1)dz=0; further conditions on K are given in
terms of F,(K(x, ¢; 2, 1)) (the partial Fourier transform in the 2 vari-
able), and may be found in [3],

(iii) Jisin the class §(R%'") of linear operators on L?(Sy) satisfying

(a) f(x’ t)=0 for t>s=Jf=0 for t>s, (b) l|X(a,a+e)jX(a,a+e)f“LP(R'_:_"")
gw(e)llx(a,a+,)f|! P&+ where Xz is the characteristic function of
{(x, 1): a<t<b} and w(e)—0 as e—0.

(2.2) DEeFINITION. If S has the form (2.1), the symbol of S is

R
o(S)(x, t;2,5) = a(x,t) + lm f f K(x, t; w, r)ette-stre)dy dy,
€ R"

!"O,R*“

The main theorem used here to prove existence (see [4] and [6]) is:


file:///uc/t
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(2.3) THEOREM. If T = (T};) is an N X N matrix of p.s.i.0.’s then T
is invertible on each II,NL?(Sg) if for some 8o>0, Bo>0,

() det(a(Tw))(s, £ 3, £)#0 for (3, £)#(0, 0), Im {> —B0| 2|2,

(ii) |det(o(Twi)(x, ¢; 2, §))| ZBo>0 for |z| =1, —8<Im {=0.

3. The spaces £2(Sr). These are similar to Bessel potential spaces
(see [2], [7]). Put Lo=(—1)*A*4D, where A is the spatial Laplace
operator. Let FQo(x) =exp(— | xl %), and put

To(x, 1) = Qo(at2/2)gn/2b if § > 0, 0 elsewhere.

For £>0 let A~*(x, £) =T'(k/2b)t*I~1Ty(x, t) (I'(-) is the gamma
function). In the spaces 8’ of tempered distributions in x, ¢, FA~*
=(| xl 2% —gf)~ki2b, 0 <k <2b. For g&EL?(Sr) put A~%g=A"*xg, and let
Ag=g.

(3.1) DEeFINITION. £5(Sr), 1<p< «, denotes the space of func-
tions f such that f=A"*xg for some g&€L?(Sr). g is unique, and
]l e2esp =||g| @ makes £f into a Banach space.

(3.2) THEOREM. Let fEL?(Sy), 1<p< . fELYSr), where 0<k
<20b if and only if DZf, |a| <k, and D A2+ ELr(Sy). Also,

[ Alek sy l;k Dol zocs,p + || DeA=41]| 265 .
als

An inverse A* to A—* may be defined using differentiation and parabolic
singular integrals, and is used in (1.12); the Fourier transform of A*
is (I xl B jf)kI2,

4. An indication of the methods of proof. With 4 given by (1.8),
we set

Tone(x, ¥, 1) = Fe,\(exp [A (x, m, 5318, 'iV)t])(xy )
(F¢.» denotes the Fourier transform in the variables £, ») and

13 .
Ti(z,5;%,9,8) = f f Av¥i(x — w, t — r)D:,_ll’,,o,,(w, y, r)dw dr;
o v R"

y#0 and j=1, - - -, b. Essentially we smooth y-derivatives in x, £.
Using each T as a parametrix, we construct (see Chapter IX of [5]
and Chapter 3 of [3]) fundamental solutions

I‘i(x’y; t; 2,1, S) = Tf(z, 3% — 2,y —nt— D)

t
+f f " Tz — w,y — 0,8 — r)®i(w,v,7; 2,7, s)dw dv dr
0 n
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and set, for f;&L?(Sp), 1<p< »,

¢
ui(x, 9, 1) = f f Pi(x3 Y, 5 3, 0, S)fi(z’ s)dzds.
o Vv R"

(4.1) THEOREM. For each §>0, u;E LI (R*X (3, =) X (0, T)) and
Lu;=0 for y>0. Moreover if | 'yI =r <2b, there is a constant C indepen-
dent of y such that

||DZ,,,u,-(-, Y, ')]Iﬁzb_l_r(sr> = C'”f“L”(sT)
and L?—limy,o A2=1"D}  ui(x, v, £) =S;f; where S;,4 is a p.s.i.o.
with symbol
(—ig)t+i-t

— 25 j) @b—1-1) [25( — ) d
(| a]o~in ( m)fA(z,O,s;ix,ig')-i-it J

(cf. (1.7), (1.8)).

(4.2) COROLLARY. Let u; be defined as in (4.1) and set u(x, vy, t)
= >0 uix,y,t). Assume L and {B,-} satisfy the conditions of (1.9).
Then for each >0, u(x, v, £) ELHP(R»X (8, ©)X (0, T)), Lu=0 for
y>0 and Lr—limy.oA® s [Bi(x, t; D.y) u(x, 3, )] = 2.1 Sk.ifi
where Si,; 15 @ p.s.4.0. and the matrix (0(Sk.;) (%, t; 2, $))&,; t5 given by
a.mn.
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