1968]

- 2. G. Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1925), 736-788.
- 3. E. Noether, Eliminationstheorie und allgemeine Idealtheorie, Math. Ann. 90 (1923), 229-261.
 - 4. J.-P. Serre, Corps locaux, Hermann, Paris, 1962.
- 5. B. L. Van der Waerden, *Modern algebra*. Vols. I, II, 2nd ed., Ungar, New York, 1937–1940.

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, FRANCE AND BROWN UNIVERSITY

VARIETIES OF GROUPS AND BURNSIDE'S PROBLEM

BY L. G. KOVÁCS

Communicated by Michio Suzuki, December 15, 1967

If \mathfrak{V} is a variety of groups and d is a positive integer, $\mathfrak{V}^{(d)}$ denotes the variety consisting of the groups whose d-generator subgroups are all in \mathfrak{V} . In a recent paper [3], B. H. Neumann formulated the Extended Burnside Problem:

Problem 7. Let \mathfrak{V} be a locally finite variety and $d \ge 1$ an integer. Is $\mathfrak{V}^{(d)}$ locally finite?

He went on to ask two related questions:

Problem 8. Is there, to each locally finite variety \mathfrak{V} , an integer $d = d(\mathfrak{V})$ such that $\mathfrak{V}^{(d)}$ is locally finite?

Problem 9. Do the locally finite groups in $\mathfrak{B}^{(d)}$, where \mathfrak{B} is a locally finite variety, form a variety?

Neumann called the latter the Restricted Extended Burnside Problem. One might derive from it, like Problem 8 from Problem 7, the following:

Problem N. Is there, to each locally finite variety \mathfrak{B} , an integer $n = n(\mathfrak{B})$ such that the locally finite groups in $\mathfrak{B}^{(n)}$ form a variety?

The purpose of this note is to present reduction theorems for Problem 8 and Problem N, similar to the Hall-Higman reduction theorems [1] for the classical forms of Burnside's Problem.

Theorem 1. If $\mathfrak B$ is a locally finite and locally soluble variety, $\mathfrak B_{LN}$ is the variety consisting of the locally nilpotent groups of $\mathfrak B$, and $\mathfrak B_{LN}$ is locally finite for some integer d, then $\mathfrak B^{(d^*)}$ is locally finite for some integer d^* .

This is a direct consequence of (c) of the forthcoming paper [2]. Theorem 2 will be derived from the following part of (b) of [2]:

LEMMA. If $\mathfrak U$ is a locally finite variety which contains only finitely many (isomorphism classes of) finite simple groups, and if $\mathfrak W_1$ is the class of those groups whose nilpotent factors and simple factors all belong to $\mathfrak U$, then $\mathfrak W_1$ is a locally finite variety.

In order to formulate Theorem 2 in full generality, some additional terminology is required. According to M. B. Powell (cf. Sheila Oates [4]), the complexity of a finite simple group S is 0 if S is abelian, and k+1 if S is not abelian and k is the largest complexity which occurs for the proper simple factors of S. In particular, the groups of complexity 1 are precisely the minimal simple groups of J. G. Thompson [5]. Attempts of Oates and Powell (cf. [4]) have raised the hope that the near future may bring a proof of the

Conjecture. For each nonnegative integer k, there exists an integer m(k), depending on k, such that:

(k) Every finite simple group of complexity at most k can be generated by m(k) elements.

Obviously, (0) is valid with m(0) = 1, and Thompson's classification of the minimal simple groups [5] implies (1) with m(1) = 2. It has, of course, been long conjectured that (k) is always true with m(k) = 2; but no proof of this stronger claim is within sight, and for the present context it does not matter how generous one is in overestimating m(k).

THEOREM 2. Let $\mathfrak B$ be a locally finite variety such that the locally finite groups in $\mathfrak B_{LN}^{(d)}$ form a variety $\mathfrak U_1$ and the finite simple groups in $\mathfrak B$ all have complexity less than k. If (k) is valid, then the locally finite groups in $\mathfrak B^{(d^*)}$ form a variety where $d^* = \max\{2, d, m(k)\}$. In particular, if $\mathfrak B$ is locally soluble (so that k can be chosen as 1), then the locally finite groups in $\mathfrak B^{(d^*)}$ form a variety where $d^* = \max\{2, d\}$.

PROOF. As $\mathfrak{V}_{LN}^{(d^*)}$ is obviously contained in $\mathfrak{V}_{LN}^{(d)}$, the finite nilpotent groups of $\mathfrak{V}^{(d^*)}$ all lie in \mathfrak{U}_1 . Let S be a finite simple group in $\mathfrak{V}^{(d^*)}$. If S can be generated by d^* elements, then it lies in \mathfrak{V} , has complexity less than k, and the order of S is at most that of the \mathfrak{V} -free group of rank d^* . If S cannot be generated by d^* elements, then (k) implies that the complexity of S is greater than k. Thus $\mathfrak{V}^{(d^*)}$ has no groups of complexity precisely k, hence it cannot contain groups of complexity greater than k either, and it follows that $\mathfrak{V}^{(d^*)}$ contains only finitely many (isomorphism classes of) finite simple groups. Let \mathfrak{U} be the variety generated by \mathfrak{U}_1 together with these simple groups: then \mathfrak{U} is locally finite and, as \mathfrak{U}_1 is also locally nilpotent, \mathfrak{U} contains only finitely many finite simple groups. (Use, for instance, (4) of [2].) Let \mathfrak{W}_1 be as in the Lemma. Then the finite groups of $\mathfrak{V}^{(d^*)}$ are all in

 \mathfrak{W}_1 , and hence so are all the locally finite groups of $\mathfrak{V}^{(d^*)}$. Thus the class of the locally finite groups of $\mathfrak{V}^{(d^*)}$ is precisely the variety $\mathfrak{W}_1 \cap \mathfrak{V}^{(d^*)}$.

REFERENCES

- 1. P. Hall and Graham Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's Problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.
 - 2. L. G. Kovács, Varieties and finite groups, J. Austral. Math. Soc. (to appear).
- 3. B. H. Neumann, Varieties of groups, Bull. Amer. Math. Soc. 73 (1967), 603-613.
- 4. Sheila Oates, *Identical relations in a small number of variables*, Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, August 1965, Gordon and Breach, New York, 1967, pp. 261–264.
- 5. John G. Thompson, Nonsolvable finite groups whose nonidentity solvable subgroups have solvable normalizers (to appear).

AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA