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The theories of associative and Lie cohomology for finite dimen­
sional algebras over fields have much in common. Let Ct be an associa­
tive algebra with unit over the field K, M a unital ft-bimodule; let £ 
be a Lie algebra over K, N an «fi-bimodule. Define Hn((&, M) 
= Extftg^GoCa, M), Hn(£, N) = E x t ^ ) ^ , JV). Here Ct° is the opposite 
algebra of Ct, U(£) is the universal enveloping algebra of <£, d is re­
garded as the regular Ct-bimodule, and K is regarded as a trivial 
«C-bimodule. We find that 

(i) Hl(Q, M), Hl(£f N) are naturally isomorphic to the K-vector-
spaces of derivations from the algebra to the bimodule modulo the 
inner derivations from the algebra to the bimodule. 

(ii) H°(a, M), H°(£, N) are naturally isomorphic to the sub-K-
vector spaces of M, N respectively that determine the inner deriva­
tion 0—i.e. üP(Ct, M) is naturally isomorphic to the K-vector-space 
generated by {ra£Af |Wu-mz, = 0} and H°(£f N) is naturally iso­
morphic to the K-vector-space generated by {#£iV|^JK = 0 } . 

(iii) i72(Ct, M), H2(£, N) are naturally isomorphic to the 2£-vector-
spaces of equivalence classes of short singular extensions of M by Ct, 
N by £> respectively. 

(iv) iïw(Ct, M), Hn(£, N), n^3t are naturally isomorphic to the 
jRT-vector-spaces of equivalence classes of singular extensions of 
length n of M by &, N by £, respectively. 

We construct a cohomology theory for an arbitrary nonassociative 
algebra satisfying a set of identities T, within which the associative 
and Lie theories are special cases. Let Ct be a T-algebra over the com­
mutative ring with unit K, M a T-bimodule for Ct. We write U(&) for 
the universal multiplication algebra of (2; that is, Z7(Ct) is an associa­
tive algebra with unit such that all Ct-bimodules are right unital 
t/(Ct)-modules in a natural fashion and conversely. For details of 
this, see Jacobson [4a] or Knopf mâcher [S], 

Following Gerstenhaber, we make the next two definitions. 
DEFINITION. H2(Ct, M) is the X-module of (not necessarily if-split) 

equivalence classes of short singular extensions of M by Ct. 
DEFINITION. iïn(Ct, M), n^3, is the J£-module of (not necessarily 

jfiT-split) equivalence classes of singular extensions of length n of M 
by a. 
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Gerstenhaber [l] has shown that if Q—>M'~+M~*M"—»0 is an 
exact sequence of <3fc-bimodules, then there are natural homomor­
phisms of if-modules ôn so that the long sequence 

Ô1 

o -» D(a, M') -» £(a, M) -* ö(a, M ") -> #2(a, M') 
-* J5P(tt, M) -* H\®, M") £ ff3(a, AT) -» • • • 

-* #»(a, M ") - • £r»+1(a, AT') -+ • • • 

is exact, where D(Q,, ) is the functor which associates to each (£-
bimodule M the if-module of derivations of Ot to M. 

DEFINITION. An inner derivation functor is an epimorphism pre­
serving subfunctor of D(Ct, ), the derivation functor. 

LEMMA. There is a 1-1 correspondence between inner derivation 
functors and left U(&)-submodules of D{% U(Q)). 

With this lemma, we may speak of finitely generated inner deriva­
tion functors, meaning that the corresponding submodule of 
D(a, U(a)) is finitely U(&) generated. Let J(dt ) be a finitely gen­
erated inner derivation functor, generated by {di}*. 

DEFINITION. #}(<*> M)=D(a, M)/J(a, M). 
Let Xit i = l, • • • , jfe, be the free C/(Ct)-module on one generator 

Xi, and regard di(~D(% Xi). Let YÇZ®y%Xi be the submodule 
generated by {a2 j*d* |a£a} . Let C/« © ^ X t / F . 

DEFINITION. Hj°(a, M)-Homu^iCj, M). 

THEOREM. If 0—>M'-+M-+M''-»() is an exact sequence of a-
bimodules, there are natural homomorphisms ôn of K-modules so that 
the long sequence 

o -> H\a, M') -> ff°(et, i o -> H°(a, if") -> H^a, MO 

-* • #w(a, if") -» ffn+1(a, J O • • • 

In the classical associative and Lie theories, one takes for J the 
inner derivation functor generated by those derivations which are in 
the Lie transformation algebra of the split null extension of t/(Ct) 
by a. 

The above definitions and theorem can easily be modified to 
handle relative cohomology, unital cohomology, or cohomology of 
algebras and bimodules with involution. In the last case, we consider 
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only derivations and morphisms commuting with involution. If 
(Ct, <r) is a finite dimensional associative algebra with unit and involu­
tion over a field K of characteristic s^2, (Jkf, <r) a unital bimodule with 
involution for ((£, or), then, by an easy extension of a theorem of 
Harris [2] 

THEOREM. Hn((a, <r), (M, <r))~Extw(Cr<a) ,?>((<*, -*)» W *))> 
w/Aere ( £/(0t), £) Aas tóe property that any unital bimodule with involution 
for (a, cr) is a right associative unital module f or (£/(&), a). 

For w^4, X a field of characteristic 5^2, (a, <r) as above, we con­
sider the Jordan matrix algebra 3C»(<$, R), where R is any canonical 
involution, (Œ, — cr) is a bimodule with involution for (Cfc, <r) and so 
determines a Jordan bimodule C for 3Cn((£, i?). 

THEOREM. T'Aère is an inner derivation functor J(5C»(Ct, R), ) 
5wc& tôa* iîj(5Cn(a, R), M)c*iExt*U(3Qtn((z,R))(Cf M)for all k^O and all 
3Cn(<$, R)-bimodules M. 

COROLLARY, 3Cn((£, R) is separable if and only if C is a projective 
3C»((£, R) bimodule. 

COROLLARY. 3Cn(0fc, R) is separable if and only if for all 3C»(Ct, R)-
bimodules M, D(3Q,n(a, R), Af)=J(5Cn(a, R), M). 

DEFINITION. I(3Cn(a, i?), ) is the inner derivation functor such 
that I(3C«(a, R), M) = {J^[RaRm]\ {a}QWn(a, R)t {m}çM}. 

COROLLARY. If characteristic KXn, then 5Cn(Cb, R) is separable if 
and only if for all 3Cn(Ct, R) bimodules M, D(3C»(a, R)t M) 
= J(5Cn(a, R), M). 

We can extend the obstruction theory of Hochschild [3] for associ­
ative algebras to associative algebras with involution and to Jordan 
matrix algebras over them. If (Ct, <r), ((B, cr) are associative with 
involution, 3C«(0fc, R), 3C„((B, R) Jordan matrix algebras, we define 
"outer multiplication" algebras and notions of "representations" of 
(a, &) into ((&, a) and 3Cw(0fc, R) into 3CW((B, R) in a manner similar to 
that of Hochschild. 

THEOREM. There is an (Ct, <r)-bimodule (N} a) satisfying: 
(i) To each representation <}>: ((%, <r)—»((B, <r), there corresponds an 

element T(<t>)ÇzHs(((&t <r), (N, a)) and the map 0—>r(0) is an epi-
morphism. 

(ii) <j> is derived from a sequence 0—»(<B, <r)—»(S, a*)—»(Ct, <r)~»0 (see 
Hochschild) if and only if r(0) =0. 



ï968] COHOMOLOGY OF NONASSOCIATIVE ALGEBRAS S93 

(iii) If r(<t>) = 0, the K-vector-space of equivalence classes of sequences 
in (ii) yielding 4> is isomorphic to iï2((Cfc, <r), (N, er)). 

THEOREM. There is an 3Cw(Cfc, R)-bimodule M satisfying: 
(i) To each representation <f>: 3Cn(Ct, i?)—»3C»((B, i?) ^ere corresponds 

an element T(<t>)ÇzIP(3Q,n((!l, i?), M) and the map <t>—>r(<£) is an epi-
morphism. 

(ii) <f> is derived from a sequence 0—>3Cn((B, R)—>3Cn(&, i?)—»3Cn(G, i?) 
—»0 if awd ö»/y if r(<£) =0. 

(iii) /ƒ r (0) =? 0, /fee K-vector-space of equivalence classes of sequences 
in (ii) yielding <j> is isomorphic to iî2(0fCn(Ot, iî), If). 

If $ is a Jordan algebra over a field if of characteristic 5^2, ikf a 
Jordan bimodule for $, Koecher [ó] has defined a Lie algebra with 
involution (K8(3), e) on the vector space â®S®R($)®[R(â)R(3)], 
where $ is linearly isomorphic to $, and a Lie bimodule with involu­
tion (i8(M), e) for (K8($), e). Let I(K8($), e) be the classical inner 
derivation previously discussed. 

THEOREM. Dig, M)/I(#, M)c*D(K8(ê), i8(M))/I{K8($), is(M)) 
^D({K8{$), e), (i8(M), c ) ) / I ((*.(*), «), {i8{M), €)). 

Koecher has also shown that K8(§) is separable if and only if Q is 
separable. This yields a new proof (originally proved in Jacobson 
[4b]) of 

COROLLARY. If $ is a separable Jordan algebra over a field of char­
acteristic 0, then all derivations of $ into any ^-bimodule M are of the 
form 

a-* a £ [RbRm], aEâ> {b} C & {m} C M. 

We define an algebra similar to Koecher's but on the vector space 
3®3® U($)-~, where U($)~ is the Lie subalgebra of U($) generated 
by the image of g under the canonical injection p: â--*?/^). We call 
this algebra {Ku($), e). 

THEOREM. There is an injection i: iï2(<J, M)-+H*((Ku(3)f e), 
(i9(M), e)). The image of i consists of those cohomology classes which are 
represented by cocycles vanishing on $PX$P. 

This implies the known 

COROLLARY. If 3 is a separable Jordan algebra over a field of char­
acteristic 0, Ma $-bimodule, then any extension of M by 3 splits. 
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