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Many of the difficulties in the study of functions between infinite 
dimensional Banach spaces disappear when one considers only per­
turbations of a fixed, well behaved, map by a class of maps with some 
finiteness condition on their range, for example compact perturba­
tions of the identity map as in the Leray-Schauder theory. The results 
stated below are intended to indicate how this procedure can be ex­
tended to study maps between Banach manifolds. In particular it can 
be used to describe the homotopy properties of Fredholm maps, 
introduced by Smale in [S]. 

These results are contained in the author's Oxford doctoral thesis, 
written under the supervision of M. F. Atiyah. It is a great pleasure 
to be able to thank Professor Atiyah, and also Professor J. Eells for 
all their help and encouragement. 

A version of Theorem 2 was proved independently by A. J. Tromba 
who used it to develop an oriented degree theory for proper Fredholm 
maps which he applied to give a proof of the Schauder existence 
theorem for quasi-linear elliptic equations. A detailed discussion of all 
these results is intended in a future joint publication with A. J. 
Tromba. 

Throughout, E and F will denote infinite dimensional Banach 
spaces, and X a paracompact space. A O-smooth manifold will mean 
a Cp Banach manifold which admits Cp partitions of unity. For back­
ground material and an exhaustive bibliography see the survey article 
by Eells [3]. 

1. Linear theory. The nonlinear theory is based on the linear 
theory sketched here. 

L(E, F) will denote the Banach space of bounded linear maps 
T: E-+F, $n(-E, F) the subspace of $»-operators (i.e. Fredholm oper­
ators of index n), GL(£) the group of units in L(E, E), GLC(E) the 
subgroup of GL(E) consisting of elements of the form 7+a, where a 
is compact, and GLF(E) the corresponding group with a of finite 
rank. A vector bundle map which is a $n-operator on each fibre will 
be called a '$„ bundle map\ 

PROPOSITION 1. Let r: B—>X be an E-vector bundle. 
(i) A $o bundle map f: B—+XXE over the identity map of X induces 

a unique GLp(E)-structure {ir, ƒ} on w such that, in a trivialization of 
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{T, ƒ}, ƒ is represented in the form (x, v) H- (#, v+a(x)v), x&X, t>££, 
where ct{x) : E—+E has finite rank. 

(ii) If 7T0 is a GLp(E)~structure on 7r, there is a $o bundle map 
f: B-+XXE such that {T, ƒ} «TT0. 

(iii) T^re are corresponding statements to (i) and (ii) /or GLC(£)-
structures on w, again using <E>0 bundle maps. 

Let KB(X, £) , K(X, E)y KF(X, E) denote respectively the set of 
equivalence classes of E-vector bundles over X with groups GL(JE), 
GLC(£), GLF(E). Taking it as the trivial bundle in (iii) above, we 
obtain a map u: [X, * 0(£, E)]-*K(X, E). 

COROLLARY. The sequence 
Ai 

[X, GLe(E)] ~> [X, GL(E)] -» [X, $0(£, E)] ^ K(X, E) -» VB(X, E) 

where the first two maps are induced by the inclusions, and the last is the 
forgetful map, is an exact sequence of sets with distinguished elements. 

This is a version of the exact sequence of Atiyah and Jânich; see 
also Neubauer [4]. 

THEOREM 1. The forgetful map KF(X, E)->K(X, E) is bijective. 

Theorem 1 is a direct consequence of Proposition 1. It follows that 
the inclusion of GLF(E) into GLC(E) is a weak homotopy equivalence. 
The choice of a suitable ascending sequence S of finite dimensional 
subspaces of E determines an injection i(S) of the infinite general 
linear group GL(oo) into GLC(£). This inclusion gives a weak homo­
topy equivalence of GL(oo) with GLF(E). Consequently 

COROLLARY (PALAIS-SVARC). The map i(S): GL(oo)—>GLC(£) is a 
homotopy equivalence. 

2. Layer structures and Fredholm maps. A map a; X-+E will be 
called locally finite dimensional (l.f.d.) if each point x in X has a 
neighbourhood Nx with a(Nx) contained in a finite dimensional sub-
space of E. If TÇzL(E> F) and U is an open subset of £ a map/: U~>F 
will be called an L(7>map if f-T: U->F is l.f.d. 

DEFINITION. If i f is a Cp manifold, a lCp layer structure' on M, 
modelled on E> is a maximal Cp atlas {(t/*, <t>î)}i for ikf, <£*: Ur^E, 
such that, when defined, <j>iO<j>Jl is an Z,(J)-map. A manifold with a 
layer structure will be called a layer manifold. 

DEFINITION. A map between layer manifolds M and N will be 
called an L(T)-map if it is represented as an Z(r)-map by the layer 
charts of M and N. 
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The collection of layer manifolds and Z-maps is a category L which 
has most of the properties of the differentiable category, including 
the notions of embeddings, submanifolds, pull backs, and also sprays, 
exponential maps and tubular neighbourhoods. 

THEOREM 2. Let M be a Cp manifold. 
(i) A C^o-mapf: M-+E induces a unique Cp layer structure {Mf ƒ} 

on M, modelled on E, with respect to which f becomes an L(I)-map into 
E with its trivial layer structure. 

(ii) If M is Cp-smooth, given a Cp layer structure Mi on M, modelled 
on E} there is a Cp$o-mapf: M--+E such that {M,f} = Mi. 

(A differentiable map ƒ between manifolds M and N is a '^ -map ' 
if Tf : TM->TN is a $n bundle map.) 

REMARK. In (i) E may be replaced by any Cp layer manifold 
modelled on E; also there are corresponding results for $n-maps. In 
order to obtain #0-maps as in (ii) only an integrable GLC(£)-structure 
on M is needed. Thus such a weaker structure can be refined to a 
layer structure provided M is O-smooth. The category L can be 
considered as a tool to study the structures based on the various 
ideals of L(E, E). 

A layer structure on M, modelled on E, induces a reduction of TM 
to GLC(E). The following converse is proved using Proposition 1 and 
the exponential map of a spray. 

THEOREM 3. Let M be a Cpsmooth E-manifold, p^3. Then if TM 
admits a reduction to GLC(£) there is a Cp$o-map ƒ: M—>E. 

THEOREM 4. Let M and N be Cp layer manifolds, modelled on E and 
F. Suppose that M is Cp-smooth and that N is paracompact. Then for 
any TE.L(E, F), the Cp L(T)~maps f: M-*N are dense in the fine 
topology of C°(Mt N). 

REMARK. Since an Z(/)-map is a$0-map, Theorems 2, 3, and 4, give 
sufficient conditions for the C°-approximation of continuous maps by 
<Êo-maps. 

The Cp homotopy classes through $n-maps of Cp$w-niaps ƒ: M—>N 
will be denoted by $» [M, N]p. 

THEOREM 5. Let Mand N be Cp-smooth E-manifolds. Then if TM is 
trivial and if TN admits a reduction to GLC(£) there is a bijectionf 

*o[ir, N]p -> [M, *o(E, E)] X [M, N]. 

This is first proved for iV==£, using Proposition 1 and its Corollary. 
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This part of the proof shows that any reduction of TM to GLC(£) is 
equivalent to an integrable reduction. 

3. Degree theory. A <3>w-map ƒ: M—>E, w^O, induces, as in Propo­
sition 1, a reduction T{M, ƒ}*, of TM to GLC (EXRn). Using this 
fact, the Palais-Svarc theorem, and Smale's extension of Sard's 
theorem, under certain conditions it is possible to give a degree theory 
for proper <ï>w-maps based on framed cobordism. The following ex­
ample is meant only as a simple illustration of what can occur. 

ILLUSTRATION. Let M be an ^-connected separable Cn+8-manifold 
n^O, modelled on an infinite dimensional Hubert space H. Then the 
proper homotopy classes of proper Cn+8<£n-maps ƒ: M—>H with 
T{ M} ƒ} k trivial are in one-to-one correspondence with the set 2 / of 
the equivalence classes of the nth stable homotopy group of spheres 
under the relation a^6 iff a = ±b. 

The Tontrjagin-Thom construction' used here depends on Bes-
saga's theorem on the diffeomorphism of H with H— {o}, [l]. 

4. Applications, (a) Embedding theorems. Given a <£0-map ƒ : M—>E 
it is a simple matter to obtain a closed embedding/: M-+EXF. The 
following extension of J. McAlpin's embedding theorem for Hubert 
manifolds follows from Theorem 2. 

EMBEDDING THEOREM. Let M be a separable Cp E-manifoldf p}£3. 
Suppose that TM admits an inverse modelled on a separable Banach 
space G. Then if EXGis Cvsmoothy there is a closed Cp embedding of M 
onto a closed (split) submanifold of EXGXFt for any infinite dimen­
sional Banach space F. Also any continuous function of M into 
EXGXF can be approximated in the fine C° topology by a one-to-one 
(split) immersion. 

(h) Nonlinear elliptic equations. The degree theory of §3 applies to 
proper Fredholm maps. A careful analysis of Smale's proof that 
Fredholm maps are locally proper, or equivalently of the proof of 
Theorem 2(i), shows 

LEMMA. Let i: E1-+E0 and j : Fi-^Fo be continuous linear injections 
of Banach spaces £1 and Fi onto dense subspaces of Banach spaces Eo 
and F0. Suppose that fr: Er—>Frt r = 0, 1, are Cp$n-maps p e l , with 
f0 o i=j o f 1. Then y if i is a compact map y f\ is proper on every closed 
bounded subset of E\. 

This lemma can be applied to the maps induced on suitably chosen 
function spaces by sufficiently smooth nonlinear elliptic boundary 



586 K. D« ELWORTHY 

value problems. The degree theory then gives direct proofs of results 
like those of F. Browder in [2]. 
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