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1. Introduction, A classical theorem of Fatou states that if ƒ is an 
Lp function on the line (circle), p*zl9 and if the harmonic function 
jFon the upper half-plane (disk) is the Poisson integral of/, then F(z) 
-+f(x) as z-*x non tangen tially for a.e. x on the line (circle). 

Generalizations in several directions have recently been found, e.g. 
[*L I2L [4]> [ö]. Our result, stated precisely below, is Fatou's the­
orem for generalized upper half-planes holomorphically equivalent to 
bounded symmetric domains and functions of type Lp,p>l, or locally 
of type L log +L. Details will appear elsewhere. 

In §2, we sketch the setting and state our result explicitly. The 
proof is case-by-case, and includes the case of the exceptional do­
mains; §3 is devoted to a sketch of the proof in a typical case. 

2. The theorem. Let D be a generalized upper half-plane, i.e. 

D = {(z9w) EVXX V2: Im z - *(w, w) G û}, 

where Vi is a complex vector space with a given real form, F2 is a 
complex vector space, QCRe Vi is an open cone, and $: V*X F2—»Fi 
is hermitian symmetric bilinear with respect to Re Vi such that 
$(w, w)ÇzU. When 0 is a domain of positivity and $ satisfies certain 
symmetry and homogeneity properties, D is holomorphically equiva­
lent to a bounded symmetric domain [S]. The distinguished boundary 
of Dis 

B = {(2, w) : Im z — $(w, w) = 0}. 

We identify B with Re F1XF2 by associating to (x+i$(w, w), w) 
the pair (x, w). There is a nilpotent group Sft of automorphisms of D 
which acts transitively on B and is also equal to Re Vi X V2 as a set. 
Haar measure on 31 is the induced Euclidean measure. 

The Poisson kernel, P(u, f), is defined on BXD, and the Poisson 
integral of a function ƒ on B is 

*tt) - f f{u)P(u,Ç)du. 
J B 
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For details of the above, see [3]. 
For uÇzB, /G& we write Ut^u + tyt, 0). Also, let I be the base 

point in Q. 

THEOREM 1. Let D be a generalized upper half-plane holomorphically 
equivalent to a bounded symmetric domain. Suppose that f(ELp(B), 
p>l, or thatfÇEL log+ L locally and is bounded off a bounded set. Then 

lim F(uTi) —•>ƒ(«) for almost every u Ç~ B. 

There are more general types of convergence. We say that /GQ 
approaches 0 restrictedly if / is constrained to lie in a proper subcone 
of 0. And we say that Ut—^Uo=go • 0 admissibly if ut stays in some 

r«(«0) « {gog'(it,0):g « (a, c), max{ | a\ , | c\2} < a | t\ } . 

THEOREM 2. Under the hypothesis of Theorem 1, F(ut)->f(uo) for 
a.e. «oG-S as Ut—>Uç> admissibly and restrictedly. 

3. The proof. The proof for domains D which are tube domains, 
i.e. for which V%~ 0, is contained in [6]. The remaining domains, with 
the exception of one of dimension 16, fall into two large classes, type I 
and type 11 lb. We indicate the proof of Theorems 1 and 2 for do­
mains of type I. The complete proof requires only slight modification. 

There is a domain of type I for each pair of integers nf m, n>0t 

WsfeO. As a bounded domain, it is realized as the space of complex 
nX(n+m) matrices f satisfying ££* < J. In the realization we consider, 
Vi is the complexification of the real vector space of hermitian sym­
metric nXn matrices, Vt is the space of complex nXm matrices, Q is 
the cone of positive definite matrices, and $(wt Wi) =wwf. Thus 

D = Dn,m « {(x + iy, w):y — ww* > 0}. 

The Poisson integral F((g-0)t) is shown to be dominated by a sum 
of maximal functions ƒ*(ƒ>(*>i(g), gGSft. We define these. 

Let (J) and (k) be, respectively, w-tuples and m-tuples of nonnega-
tive integers and />0. 

Ru) - {r = (n, • • • , '•) G En: \ r, | û l'U), 

S{k) - {seEm: | * | £ 2hit}. 

Every #GRe Vi can be written in the form x^JrWifik, kÇzU(n), 
rÇzEnt where d(r) is the diagonal nXn matrix whose entries are the r*-. 
And every wÇzV* can be written w~ud(s)v, u(~U(n), vÇEU(m), 
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sGEmt where 3(s) is the nXtn diagonal-form matrix whose entries are 
the Si. We set 

#(/>(*> = {(#> w) ^ (* d(r)k> ud(s)v):r G RUh s G S(&) }. 

(If m^nt the rectangles 5 lie in Eni but this makes no difference.) 
There is defined for each (J) and (k) a sequence of neighborhoods 

U(n) - iVWx) D ffwwi D • • O {/}, 

and we define 

£<;>(*)! = {(*> «0 * (*"" d(r)£, ud(s)v) G iîoxjb): £w G #(/)(*)*}> 

jfü>t»>iGÖ = sup | EUX*)*!*"1 I ƒ(**)<**. 

We abuse notation now by writing / for both a positive number 
and the matrix //. 

LEMMA 1. 

sup F((g-0)0 g il E 2-ïa/i)i/l+i*u £ / £ ) ( l ) , k ) , 

w/^£ £ depends only on m and n. 

PROOF. It is enough to prove the inequality when g » 0. We notice 
that 

(1) P((*, „) , iU, 0)) - * ( * , . ) - { ^ - " f c — f t - . 

The method of proof is to compare the size of Pt(u),u(E .E'(/)(jb)WL 
—-E(J-D(t-i)i» with the size of |E(j)(fc)j|. (The t112 factor in the defini­
tion of JS(/)(t)| is due to the ww* term in (1).) The necessity for consid­
ering the neighborhoods NQ^NIZ) • • * may be seen by considering 
a special case. 

In particular, if x = krld(2*f 0, • • • , 0)*, w = uâ(2J'l2t 0, • • • , 0)», 
then | det(x+i[ww*+1]) | 2 depends on ku, ranging from 22>+(2 /+l)2 

when ku = I to (22>+1) (2>'+1)2. The proof that the number of Nj that 
need be considered is finite involves an induction, and is complicated. 

The proof of Theorem 1 is now routine once one establishes 

LEMMA 2. ||/5(*d|pâi4p||/||p> where Ap is independent of (j), (k) 
and L 
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PROOF. I t is not hard to show that 

ƒ I I Ju)(k)(g; k, u, v)x(ku)dvdudk 

(2) fu)w(g) S A , 
I I I x(ku)dvdudk 

where x is the characteristic function of N^^i and 

f<JUh)(g\k,u,v) 

- s u p | lie/) | |S<*) | , tU2f(g-(k-ld(r)k,uâ(s)v))dsdr. 
t>o J R(j) J S(k) 

The function ƒ(• ; k, u, v) may be thought of as giving maximal aver­
ages over w+w-dimensional rectangles "pointed" in the direction 
determined by u, v and k. Now the subgroup 

€>*,«,» = {h = (k~ld(r)k} uâ(s)v):r E En, s & Em] 

of SSI is isomorphic to EnXEm, and so Jox*) restricted to the coset 
g*&k,u,* is an ordinary maximal function. Thus 

(3) f \fwn(gh;k,u,v)\>dk£B,Ç \f{gh)\*dh. 

Integrating over 9i /£ on both sides of (3), one has 

f | Kg; k, u, v) \ug ZB,( J Kg) H-

This, together with (2), proves the lemma. 
The proof that 11/<*)(fc)i|| I ̂  -41| |ƒ| [ i io« +x, depends on the analogous 

result for ordinary maximal functions. To prove Theorem 1 in the 
case/EL1 would involve establishing a weak-type inequality, 

\{g--\f*unM\ >s}\ < Aos-'WflU. 

Since the weak-type inequality for rectangular maximal functions 
cannot be "rotated" the way norm inequalities can, further analysis 
is necessary. This analysis has been performed by E. M. Stein (see 
[7]) and the author; and will appear. 

We conclude by noting that Theorem 2 is a consequence of The­
orem 1 and the following result, which is a slight extension of the 
corresponding result in the tube domain case. 
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LEMMA 3. Suppose that ut-->Uo restrictedly and admissibly. Let ï>0 
be the smallest eigenvalue of t. Then, for any u'ÇzB, 

P(u',ut) S AP(u', (m)a). 
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