ALMOST EVERYWHERE CONVERGENCE OF POISSON INTEGRALS ON GENERALIZED HALF-PLANES

BY NORMAN J. WEISS1

Communicated by A. P. Calderón, December 6, 1967

1. Introduction. A classical theorem of Fatou states that if f is an L^p function on the line (circle), $p \ge 1$, and if the harmonic function F on the upper half-plane (disk) is the Poisson integral of f, then $F(z) \rightarrow f(x)$ as $z \rightarrow x$ nontangentially for a.e. x on the line (circle).

Generalizations in several directions have recently been found, e.g. [1], [2], [4], [6]. Our result, stated precisely below, is Fatou's theorem for generalized upper half-planes holomorphically equivalent to bounded symmetric domains and functions of type L^p , p>1, or locally of type L log ^+L . Details will appear elsewhere.

In §2, we sketch the setting and state our result explicitly. The proof is case-by-case, and includes the case of the exceptional domains; §3 is devoted to a sketch of the proof in a typical case.

2. The theorem. Let D be a generalized upper half-plane, i.e.

$$D = \{(z, w) \in V_1 \times V_2 : \operatorname{Im} z - \Phi(w, w) \in \Omega\},\$$

where V_1 is a complex vector space with a given real form, V_2 is a complex vector space, $\Omega \subset \operatorname{Re} V_1$ is an open cone, and $\Phi \colon V_2 \times V_2 \to V_1$ is hermitian symmetric bilinear with respect to $\operatorname{Re} V_1$ such that $\Phi(w, w) \subset \overline{\Omega}$. When Ω is a domain of positivity and Φ satisfies certain symmetry and homogeneity properties, D is holomorphically equivalent to a bounded symmetric domain [5]. The distinguished boundary of D is

$$B = \{(z, w) : \text{Im } z - \Phi(w, w) = 0\}.$$

We identify B with Re $V_1 \times V_2$ by associating to $(x+i\Phi(w, w), w)$ the pair (x, w). There is a nilpotent group \Re of automorphisms of D which acts transitively on B and is also equal to Re $V_1 \times V_2$ as a set. Haar measure on \Re is the induced Euclidean measure.

The Poisson kernel, $P(u, \zeta)$, is defined on $B \times D$, and the Poisson integral of a function f on B is

$$F(\zeta) = \int_{B} f(u) P(u, \zeta) du.$$

¹ Partially supported by the U. S. Air Force Office of Scientific Research; Harmonic Analysis Contract at Princeton University.

For details of the above, see [3].

For $u \in B$, $t \in \Omega$ we write $u_t = u + (it, 0)$. Also, let I be the base point in Ω .

THEOREM 1. Let D be a generalized upper half-plane holomorphically equivalent to a bounded symmetric domain. Suppose that $f \in L^p(B)$, p > 1, or that $f \in L \log^+ L$ locally and is bounded off a bounded set. Then

$$\lim_{\tau \to 0} F(u_{\tau I}) \to f(u) \text{ for almost every } u \in B.$$

There are more general types of convergence. We say that $t \in \Omega$ approaches 0 restrictedly if t is constrained to lie in a proper subcone of Ω . And we say that $u_t \rightarrow u_0 = g_0 \cdot 0$ admissibly if u_t stays in some

$$\Gamma_{\alpha}(u_0) = \left\{ g_0 g \cdot (it, 0) : g = (a, c), \max \left\{ \left| a \right|, \left| c \right|^2 \right\} < \alpha \left| t \right| \right\}.$$

THEOREM 2. Under the hypothesis of Theorem 1, $F(u_t) \rightarrow f(u_0)$ for a.e. $u_0 \in B$ as $u_t \rightarrow u_0$ admissibly and restrictedly.

3. The proof. The proof for domains D which are tube domains, i.e. for which $V_2 = 0$, is contained in [6]. The remaining domains, with the exception of one of dimension 16, fall into two large classes, type I and type IIIb. We indicate the proof of Theorems 1 and 2 for domains of type I. The complete proof requires only slight modification.

There is a domain of type I for each pair of integers n, m, n > 0, $m \ge 0$. As a bounded domain, it is realized as the space of complex $n \times (n+m)$ matrices ζ satisfying $\zeta \zeta^* < I$. In the realization we consider, V_1 is the complexification of the real vector space of hermitian symmetric $n \times n$ matrices, V_2 is the space of complex $n \times m$ matrices, Ω is the cone of positive definite matrices, and $\Phi(w, w_1) = ww_1^*$. Thus

$$D = D_{n,m} = \{(x + iy, w): y - ww^* > 0\}.$$

The Poisson integral $F((g \cdot 0)_t)$ is shown to be dominated by a sum of maximal functions $f^*_{(j)(k)l}(g)$, $g \in \mathbb{R}$. We define these.

Let (j) and (k) be, respectively, n-tuples and m-tuples of nonnegative integers and t>0.

$$R_{(j)}^{t} = \{r = (r_{1}, \dots, r_{n}) \in E_{n} : |r_{i}| \leq 2^{j_{i}}t\},$$

$$S_{(k)}^{t} = \{s \in E_{m} : |s_{i}| \leq 2^{k_{i}}t\}.$$

Every $x \in \text{Re } V_1$ can be written in the form $x = k^{-1}d(r)k$, $k \in U(n)$, $r \in E_n$, where d(r) is the diagonal $n \times n$ matrix whose entries are the r_i . And every $w \in V_2$ can be written $w = u\tilde{d}(s)v$, $u \in U(n)$, $v \in U(m)$,

 $s \in E_m$, where $\tilde{d}(s)$ is the $n \times m$ diagonal-form matrix whose entries are the s_i . We set

$$H_{(j)(k)}^{t} = \{(x, w) = (k^{-1}d(r)k, u\tilde{d}(s)v) : r \in R_{(j)}^{t}, s \in S_{(k)}^{t^{1/2}}\}.$$

(If $m \ge n$, the rectangles S lie in E_n , but this makes no difference.) There is defined for each (j) and (k) a sequence of neighborhoods

$$U(n) = N_{(j)(k)0} \supset N_{(j)(k)1} \supset \cdots \supset \{I\},\,$$

and we define

$$E_{(j)(k)l}^{t} = \left\{ (x, w) = (k^{-1}d(r)k, u\tilde{d}(s)v) \in H_{(j)(k)}^{t} : ku \in N_{(j)(k)l} \right\},$$

$$f_{(j)(k)l}^{*}(g) = \sup_{t>0} \left| E_{(j)(k)l}^{t} \right|^{-1} \int_{E_{(j)(k)l}} f(gh) dh.$$

We abuse notation now by writing t for both a positive number and the matrix tI.

LEMMA 1.

$$\sup_{t>0} F((g\cdot 0)_t) \leq A \sum_{(j)(k)} 2^{-\lceil (1/2)|j|+|k| \rceil} \sum_{l=1}^{L} f_{(j)(k)l}^*(g),$$

where L depends only on m and n.

PROOF. It is enough to prove the inequality when g = 0. We notice that

(1)
$$P((x, w), (it, 0)) = P_t(x, w) = \left\{ \frac{\det t}{|\det(x + i[ww^* + t])|^2} \right\}^{n+m}$$

The method of proof is to compare the size of $P_t(u), u \in E^t_{(f)(k),l-1} - E^t_{(f-1)(k-1)l}$, with the size of $|E^t_{(f)(k)l}|$. (The $t^{1/2}$ factor in the definition of $E^t_{(f)(k)l}$ is due to the ww^* term in (1).) The necessity for considering the neighborhoods $N_0 \supset N_1 \supset \cdots$ may be seen by considering a special case.

In particular, if $x = k^{-1}d(2^j, 0, \dots, 0)k$, $w = u\tilde{d}(2^{j/2}, 0, \dots, 0)v$, then $|\det(x+i[ww^*+I])|^2$ depends on ku, ranging from $2^{2j}+(2^j+1)^2$ when ku = I to $(2^{2j}+1)(2^j+1)^2$. The proof that the number of N_j that need be considered is finite involves an induction, and is complicated.

The proof of Theorem 1 is now routine once one establishes

LEMMA 2. $||f_{(j)(k)l}^*||_p \le A_p ||f||_p$, where A_p is independent of (j), (k) and l.

PROOF. It is not hard to show that

$$(2) \quad f_{(j)(k)l}^{*}(g) \leq A \frac{\int_{U(n)} \int_{U(n)} \overline{f}_{(j)(k)}(g; k, u, v) \chi(ku) dv du dk}{\int \int \int \int \chi(ku) dv du dk},$$

where χ is the characteristic function of $N_{(j)(k)l}$ and

 $f_{(j)(k)}(g;k,u,v)$

$$= \sup_{t>0} \left| R_{(t)}^{t} \right|^{-1} \left| S_{(k)}^{t^{1/2}} \right|^{-1} \int_{R_{(t)}}^{t} \int_{S_{(k)}}^{t^{1/2}} f(g \cdot (k^{-1}d(r)k, u\tilde{d}(s)v)) ds dr.$$

The function $\bar{f}(\cdot; k, u, v)$ may be thought of as giving maximal averages over m+n-dimensional rectangles "pointed" in the direction determined by u, v and k. Now the subgroup

$$\mathfrak{H}_{k,u,v} = \{ h = (k^{-1}d(r)k, u\tilde{d}(s)v) : r \in E_n, s \in E_m \}$$

of \mathfrak{R} is isomorphic to $E_n \times E_m$, and so $\tilde{f}_{(j)(k)}$ restricted to the coset $g \cdot \mathfrak{F}_{k,u,v}$ is an ordinary maximal function. Thus

(3)
$$\int_{\mathfrak{S}_{k,u,v}} \left| f_{(G)(k)}(gh;k,u,v) \right|^p dh \leq B_p \int_{\mathfrak{S}_{k,u,v}} \left| f(gh) \right|^p dh.$$

Integrating over $\mathfrak{N}/\mathfrak{H}$ on both sides of (3), one has

$$\int_{\mathfrak{N}} \left| \, \overline{f}(g; \, k, \, u, \, v) \, \right|^p dg \, \leq \, B_p \int_{\mathfrak{N}} \left| \, f(g) \, \right|^p dg.$$

This, together with (2), proves the lemma.

The proof that $||f^*_{(J)(k)}||_1 \le A_1 ||f||_{L \log^+ L}$ depends on the analogous result for ordinary maximal functions. To prove Theorem 1 in the case $f \in L^1$ would involve establishing a weak-type inequality,

$$|\{g: |f^*_{(f)(k)l}(g)| > s\}| < A_0 s^{-1} ||f||_1.$$

Since the weak-type inequality for rectangular maximal functions cannot be "rotated" the way norm inequalities can, further analysis is necessary. This analysis has been performed by E. M. Stein (see [7]) and the author; and will appear.

We conclude by noting that Theorem 2 is a consequence of Theorem 1 and the following result, which is a slight extension of the corresponding result in the tube domain case.

LEMMA 3. Suppose that $u_i \rightarrow u_0$ restrictedly and admissibly. Let $\bar{t} > 0$ be the smallest eigenvalue of t. Then, for any $u' \in B$,

$$P(u', u_t) \leq AP(u', (u_0)_{tI}).$$

REFERENCES

- 1. S. Helgason and A. Koranyi, A Fatou-type theorem for harmonic functions on symmetric spaces, Bull. Amer. Math. Soc. 74 (1968), 258-263.
- 2. A. Knapp, Fatou's theorem for symmetric spaces. I, Mimeographed notes, Cornell Univ., Ithaca, N. Y., 1967.
- 3. A. Koranyi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332-350.
- 4. A. Koranyi and E. M. Stein, Fatou's theorem for generalized halfplanes, C.I.M.E. Summer Course on Bounded Homogeneous Domains, Cremonese, 1967.
- 5. A. Koranyi and J. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265-288.
- 6. N. J. Weiss, Almost everywhere convergence of Poisson integrals on tube domains over cones, Trans. Amer. Math. Soc. 129 (1967), 283-307.
- 7. E. M. Stein, Maximal functions and Fatou's theorem, C.I.M.E. Summer Course on Bounded Homogeneous Domains, Cremonese, 1967.

PRINCETON UNIVERSITY