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1. Introduction. Let - 4 ^ 0 and J B ^ O be two positive bounded self­
adjoint operators. The two algebraic questions which immediately 
arise are: (1) is A+B^O; (2) is BA j^O? The first question (and its 
extension to accretive operators on a Banach space) has trivially an 
affirmative answer; the second question also has an affirmative an­
swer, under the additional condition that A and B commute. However, 
apparently question (2), which due to the general nonselfadjointness 
of BA must be reformulated as (2') Re(BAx, x)^0 for all x, has re­
mained unanswered for general (i.e., noncommuting) operators A and 
B. This is clearly an important mathematical question, and the 
purpose of this announcement is to state sufficient (and rather sharp) 
conditions for the more general (2") Re[BAx, x]^0 for all #, where 
[x, y] is a semi-inner product on any Banach space (in the special 
case of a Hubert space, it is necessarily the inner product). 

In §2 we introduce two new quantities which are technically 
essential in our treatment, namely the angle of an operator and the 
minimum of a certain (norm) function related to tangent functionals. 
In §3 we bound the behavior of the latter, determining exact values 
for the important class of selfadjoint operators. Using these two 
quantities, in §4 we give criteria for (2") to hold; our main result is 
Theorem 4.2. In §5 we give positive lower bounds for the resulting 
accretive operator products, and compare them with bounds for 
commuting selfadjoint operators. In §6 we apply these results to a 
semigroup question which motivated this work. However, it is ex­
pected that the criteria here developed will be useful elsewhere in 
operator theory and in those parts of theoretical physics where a zero 
commutator is the exception. In §7 we make further comments. Com­
plete proofs of these and related results may be found in the references 
(in particular, [ô]) and in a paper under preparation, 

2. Definitions, the angle of an operator. Consider the following 
(well-known) quantitative functions defined on the Banach algebra 
of bounded operators B: X-+X, X a complex Banach space, [x, y] a 
semi-inner product (see Lumer [ l l ] ) , ||x|| = l : ||i3|j =sup| |Bx| | ; 
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0(5)= sup Re[Bx, x]; 7(B)«inf||J3*||; m(5)=inf Re[Bx, x]. An 
operator B is called accretive if m(B) ^ 0 , strongly accretive if m(B) >0, 
dissipative if ô(5) S 0, strongly dissipative if 0(5) <0. If 5 is selfadjoint 
(X a Hubert space), replace accretive and dissipative by positive and 
negative, respectively, and note that M(B)=6(B) is commonly used 
then. We will also consider unbounded operators, the above quan­
tities remaining meaningful in the extended real numbers. Hereafter 
an operator B is assumed bounded with D(B)=X, unless specifically 
stated otherwise; in all cases, D(B) is assumed to be dense in X. 

DEFINITION 1. <t>R(B) = Cos-1{mix(Re[Bxf x]-\\Bx\\-1), XED(B), 
|H| = 1, x<£N(B)}. Here B may be bounded or unbounded. We call 
<I>R(B) the (real) angle of B; it measures the maximum (real) turning 
effect of B. 

DEFINITION 2. gm(5) = min« g(e, 5) , c^O, g(e, 5) = ||e5 + l||. Let em 

(unique when X is a Hubert space and 0(5) <0) denote any value of 
€ such that g(em, B)=gm(B). Clearly gw(5) = l when 0(5)^0; but 
interest attaches to gm(B) when 0(5) <0. 

3. Lemmas. The following is a minor sharpening of results in [ l l ] , 
[12], [l3]; for bounded everywhere defined operators on a Hubert 
space, it is contained in the results of [l]. 

LEMMA 3.1. Let B (bounded or unbounded) be dissipative. Then 
y(€B-7)^1 ~€0(5), €^0. 

The next result establishes functions bounding the behavior of 
£(€, B). 

LEMMA 3.2. 

(i) max{€||5|| - 1, 1 + €0(5)} g g(e, 5) 

g min{l + € | |5 | | , 1 + 60(5) + e2[||5|| + | 0(5) | ]*}, 

0(5)gg'(e, 5 ) g | | 5 | | for all, except at most a countable number of 
values of, e. 

(ii) When B is dissipative, 

<\\B\\ + d(B))-(\\B\\ - 6(B))-* g g(e, B) =g (1 + «»||5||«H1 - é(B))~K 

In a Hubert space the upper bounds in Lemma 3.2 can be sharp­
ened, since then it is easy to see that g(e, 5) g (e2||5||2 + l +2e0(5))1'2, 
and this upper bound is attained by examples. A partial upper bound 
for g(e, 5) was found in Hildebrand [9] for a Hubert space. The lower 
bounds in Lemma 3.2 are sharp, as seen by: 
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LEMMA 3.3. Let B be selfadjoint. Then g(e, B) assumes (everywhere) 
the lower bounding values of Lemma 3.2; if g'(e, B) has a discontinuity, 
it occurs at «c«2(|js|| -0(B))-1; when 6(B) <0, €W = €0 and gm(B) 
= (\\B\\+em<\\B\\-e(B))-K 

4. Positive operator products. When the operators commute, it is 
easy to obtain results such as the following, which is not intended to 
be most general. 

PROPOSITION 4.1. Let A (bounded or unbounded) be selfadjoint and 
positive, B accretive, A commuting with B; then BA is accretive. 

Our main concern is the general case of noncommuting operators 
in a Banach space, and our main result is the following. 

THEOREM 4.2. Let A {bounded or unbounded) and B be such that 
gm(~-B) g cos <1>R(A) ; then BA is accretive. 

COROLLARY 4.3. Let A and B be strongly accretive. If either gm(—B) 
<>m(A)-\\A\\-1 or gm(-A)£m(B)'\\B\\"1, then both BA and AB are 
accretive. 

COROLLARY 4.4. Let A and B be positive selfadjoint operators. If 
(M(B)--m(B))-(M(B)+m(B))-1£m(A)-(M(A))-1, or (equivalent^) 
vice-versa, then both BA and AB are accretive. Sharper: BA is accretive 
if l.h.s. £2(m(A) • M (A))1'*- (m(A)+M(A))~K 

It can be seen by one-dimensional normal operators and two-
dimensional selfadjoint operators that the above criteria is sharp. It 
should be noted that A strongly positive and B strongly positive does 
not imply BA accretive, in contrast to both the commuting case 
(Proposition 4.1) and the results for the spectrum <r(BA) obtained in 
Williams [lS]. 

5. Lower bounds, an example. The lower bound Ji below is ob­
tained as the uniform lower bound of an inequality of recent interest 
due to Diaz and Metcalf [2]; similar inequalities have been given by 
Greub and Rheinboldt, Petryshyn, Makai, Krasnosel'skiï and Krein, 
Kantorovich, etc.; see [2]. 

THEOREM 5.1. The following are lower bounds for m(BA). 
fc«[m(i4).(m(3)H|i4^ 

•II-BII]-"1; A and B strongly positive commuting selfadjoint operators. 
b2~m(A)*m(B)\ A (bounded or unbounded) positive selfadjoint, B 

accretive, A commuting with B. 
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&8 = m(A) • [1 -gm(-B) • (cos ^C^)) - 1 ] • M - - B ) ) - 1 ; -4 (&<wmfe<* or 
unbounded) and B such that gm(—B) ^cos <J>R(A). 

As a more accessible lower bound, bz has itself the lower bound 
bi~(m(A)-gm(-B)-\\A\\)-(k€m(-B))~1 when A is bounded. For a 
comparison, let .4 and B be strongly positive commuting selfadjoint 
operators; then one can see that always b^Sbx^bz^b^ As an ex­
ample, let m | | =| |£| | = 1, m(A)=m(B) = 2-1; then &2 = 4-1, fo^S"1, 
fa*=8~l. More specifically cos 0^(4)^0.9428 and &3=0.2424, a result 
practically as good as the best bound given under the commuting 
hypotheses. 

6. Multiplication of semigroup generators. Let G(l, 0) denote all 
infinitesimal generators of strongly continuous contraction semi­
groups on a Banach space X. Much is known about the perturbation 
of AEiG(l, 0); for the most general condition on B (bounded or un­
bounded) so that A+B(EG(1> 0), see [4]. That then the semigroup 
generated by A +B may be formed as a limit of products of the semi­
groups generated by A and B has been investigated by Trotter, Nel­
son, Kato; see [lO], [13]. However, the question of when the product 
BA £G(1, 0) was apparently first considered in the recent paper Dor-
roh [3], where it was shown that if -X" is a space of bounded functions 
and A(E.G(1, 0), then pAÇzG(l, 0) when p is the operator given by 
multiplication by a positive bounded function, bounded below away 
from zero. In [6] the following is established. 

THEOREM 6.1. Let X be any Banach space, A (bounded or unbounded) 
EG(1, 0), either of the following (disjoint) conditions holding f or B: 

(i) B is strongly accretive; 
(ii) 3e>0 such that e||^-1|[~1>||€J5 — j | | ^ 1 , m(B)£0. 

Then BA GG(1, 0) if and only if BA is dissipative. 

COROLLARY 6.2. Let A (bounded or unbounded) £G(1, 0), B strongly 
accretive, gm(—B) ^> cos </>R(—A); thenBAÇzG(\, 0). 

7. Further remarks. Other trigonometric interpretations are possi­
ble; e.g., for positive selfadjoint A with point spectrum only, one has 
gm( —A) = sin 4>R(A). The results herein are somewhat constrained to 
bounded A by the interesting fact [8] that often (e.g., for most Hu­
bert space operators) accretive unbounded A possess the property 
cos 4>R(A) = 0. The two parameters cos <I>R(A) and gm(B) are currently 
being computed for certain operator classes. Extensions of the results 
of §6 to unbounded B, and applications thereof, will appear in [7]. 
W. G. Strang has kindly observed that our criteria contains his previ­
ous results [l4] for AB+BA à 0 , A and B selfadjoint matrices. 
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