BERRY-ESSEEN BOUNDS FOR THE MULTI-DIMENSIONAL CENTRAL LIMIT THEOREM¹

BY R. N. BHATTACHARYA

Communicated by P. R. Halmos, September 21, 1967

1. Introduction. Let $\{X_n\}$ be a sequence of independent and identically distributed random variables each with mean zero, variance unity, and finite absolute third moment β_3 . Let F_n denote the distribution function of $(X_1 + \cdots + X_n)/(n)^{1/2}$. Berry [2] and Esseen [4] have proved that

(1)
$$\sup_{x \in R_1} |F_n(x)| - \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^x e^{-y^2/2} dy | \le c\beta_3/n^{1/2}, \quad n = 1, 2, \cdots,$$

where c is a universal constant. Consider now a sequence $\{X(n)\}$ $=(X_1^{(n)}, \cdots, X_k^{(n)})$ of independent and identically distributed random vectors in R_k each with mean vector $(0, \dots, 0)$ and covariance matrix I, the $k \times k$ identity matrix. If P_n denotes the probability distribution of $(X^{(1)} + \cdots + X^{(n)})/n^{1/2}$ and Φ is the standard kdimensional normal distribution, then it is well known that P_n converges weakly to Φ as $n \to \infty$. Bergström [1] has extended (1) to this case, assuming finiteness of absolute third moments of the components of $X^{(1)}$. Since weak convergence of a sequence Q_n of probability measures to Φ means that $Q_n(B) \rightarrow \Phi(B)$ for every Borel set B satisfying $\Phi(\partial B) = 0$, ∂B being the boundary of B, it seems natural to seek bounds of $|P_n(B) - \Phi(B)|$ for such sets B (called Φ -continuity sets). Let @ be a class of Borel sets such that, whatever be the sequence Q_n converging weakly to Φ , $Q_n(B) \rightarrow \Phi(B)$ as $n \rightarrow \infty$ uniformly for all $B \in \alpha$. Such a class is called a Φ -uniformity class. By a theorem of Billingsley and Topsoe [3], a class α is a Φ -uniformity class if and only if $\sup \{\Phi(\partial B)^{\epsilon}; B \in \alpha\} \downarrow 0$ as $\epsilon \downarrow 0$, where $(\partial B)^{\epsilon}$ is the ϵ -neighborhood of ∂B . This leads one naturally to consider the class $\alpha_1(d, \epsilon_0)$ of all Borel sets B for which $\Phi(\partial B)^{\epsilon} \leq d\epsilon$ for $0 < \epsilon < \epsilon_0$, d and ϵ_0 being any two given positive constants. One may also consider the class $\mathfrak{C}_1^*(d, \epsilon_0)$, which is the largest translation-invariant subclass of $\mathfrak{A}_1(d, \epsilon_0)$; this means that $B \in \alpha_1^*(d, \epsilon_0)$ if and only if all translates of B belong to $\mathfrak{A}_1(d, \epsilon_0).$

¹ The research for this work was supported in part by the Army Research Office, Office of Naval Research, and Air Force Office of Scientific Research by Contract No. Nonr-2121(23), NR 343-043.

2. **Results.** We shall write $\beta_s = \sum_{i=1}^k E |X_i^{(1)}|^s$ for s > 0. Also c's will denote constants. For example, $c_1(k, \delta)$, $c_2(k)$, and c_4 will stand for a constant depending only on k and δ , a constant depending on k alone, and a universal constant, respectively.

Theorem 1. Suppose $\beta_{3+\delta} < \infty$ for some $\delta > 0$. Then, for all n, $\sup |P_n(B) - \Phi(B)|$

$$\leq n^{-1/2} \{ c_1(k,\delta) \beta_{3+\delta}^{3(1+\delta)/(3+\delta)} + [c_2(k)d + c_3(k)/\epsilon_0] \beta_{3+\delta}^{3/(3+\delta)} \},$$

where the supremum extends over all B in $\mathfrak{A}_1^*(d, \epsilon_0)$.

We shall state two applications of Theorem 1.

EXAMPLE 1. Let \mathfrak{C} be the class of all measurable convex sets in R_k . It follows from certain results of Ranga Rao [5] that $\mathfrak{C} \subset \mathfrak{A}_1^*(d(k), \epsilon_0)$ for every $\epsilon_0 > 0$, d(k) being an appropriate constant depending on k. Hence

$$\sup_{C \in \mathcal{C}} \left| P_n(C) - \Phi(C) \right| \leq n^{-1/2} \left\{ c_1(k, \delta) \beta_{3+\delta}^{3(1+\delta)/(3+\delta)} + c_2(k) d(k) \beta_{3+\delta}^{3/(3+\delta)} \right\}$$

for all n. This is an improvement on a result of Ranga Rao [6].

EXAMPLE 2. Let $\mathfrak{F}(l)$ be the class of all measurable sets in R_2 each of whose boundaries is contained in a rectifiable curve of length not exceeding l. It may be shown (cf. [3]) that $\mathfrak{F}(l) \subset \mathfrak{A}_{\mathbf{l}}^*(4\pi l + 8\pi, 1)$. Hence Theorem 1 applies. In fact, in this case it suffices to assume that $\beta_3 < \infty$, so that we have

$$\sup_{F \in \mathfrak{F}(I)} |P_n(F) - \Phi(F)| \leq n^{-1/2} \{ (c_4 l^2 + c_5 l + c_6) \beta_3 \}, \quad n = 1, 2, \cdots.$$

Theorem 2. Suppose $\beta_{3+\delta} < \infty$ for some $\delta > 0$. Then, for all n, $\sup |P_n(B) - \Phi(B)|$

$$\leq n^{-1/2} \left\{ c_7(k,\delta) \beta_{3+\delta}^{6/(3+\delta)} + c_8(k) \left[d + 1/\epsilon_0 \right] \beta_{3+\delta}^{3/(3+\delta)} \log(n+1) \right\},\,$$

where the supremum extends over all B in $\mathfrak{A}_1(d, \epsilon_0)$.

The methods used in proving Theorems 1 and 2 enable one to obtain bounds for general Φ -uniformity classes, and, in particular, for any Φ -continuity set.

An asymptotic expansion holds for the class $\alpha_1(d, \epsilon_0)$ under the assumption that

$$\lim_{|t|\to\infty} \sup_{|t|\to\infty} |f(t)| < 1,$$

where f is the characteristic function of $X^{(1)}$. If $\beta_{\mathfrak{o}} < \infty$ for some integer $s \ge 3$, then $P_n(B)$ may be estimated by this expansion with an error $O(n^{-(\mathfrak{o}-2)/2} \cdot \lceil \log n \rceil^{k/2})$ uniformly for all $B \in \mathfrak{A}_1(d, \epsilon_0)$.

EXTENSIONS. Theorems 1 and 2 may be extended to the following cases: (1) $\{X^{(n)}\}$ is not identically distributed, but $\sup_n \sum_{i=1}^k E |X_i^{(n)}|^{3+\delta} < \infty$ for some $\delta > 0$; (2) $\{X^{(n)}\}$ has a common nonsingular covariance matrix perhaps different from I.

In proving Theorem 1 we look at the convolution $(P_n - \Phi)^*\Gamma_n$, where Γ_n is a probability measure having a characteristic function which vanishes everywhere outside a sphere, and Γ_n converges weakly to the probability measure degenerate at $(0, \dots, 0)$. Theorem 2 is obtained by sharpening a technique of Esseen [4] and Ranga Rao [5].

The details and proofs of these results, which are part of the author's doctoral dissertation, submitted to the University of Chicago, will appear elsewhere.

ACKNOWLEDGEMENT. I am extremely grateful to Professor Patrick Billingsley for guidance and encouragement, and, in particular, for suggesting the above investigation.

REFERENCES

- 1. H. Bergström, On the central limit theorem in R_k , k>1, Skand. Aktuarietidskr. 28 (1945), 106-127.
- 2. A. C. Berry, On the accuracy of Gaussian approximation to the sum of independent variates, Trans. Amer. Math. Soc. 49 (1941), 122-136.
- 3. P. Billingsley and F. Topsoe, *Uniformity in weak convergence*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 7 (1967), p. 1-16.
- 4. C. G. Esseen, Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law, Acta Math. 77 (1945), 1-125.
- 5. R. Ranga Rao, Some problems in probability theory, Ph.D. thesis, Calcutta University, 1960.
- 6. —, On the central limit theorem in R_k , Bull. Amer. Math. Soc. 67 (1961), 359-361.

University of Chicago