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In Theorem 2 of [ l ] 2 A. F. Monna generalized a result by W. A. J. 
Luxemburg on fixed points [2], valid for one operator in a generalized 
complete metric space, to a suitable family of operators; this result 
was later completed by M. Edelstein [3]. 

Clearly, when the family reduces to a unique element (i.e. Ti^T 
for all i), one gets Luxemburg's result. But if one considers the family 
of iterates of T: Ti= T* (i== 1, 2, • • • ), since Hypothesis 1 of Monna's 
Theorem requires d(TiX, Tiy)^pd(x, y) ( i = l , 2, • • • ) when d(x, y) 
SC, we must have, in particular, d(Tx, Ty)Spd(x, y), and Luxem­
burg's Theorem applies, providing even with a stronger conclusion 
than Monna's for this particular situation. In order to include this 
case as a strict generalization of Luxemburg's result, we relax Hy­
pothesis 1 slightly, thus including also Monna's Theorem, and at the 
same time we get for the family {T4} a non trivial result. This last 
assertion will be clarified with an example. This constitutes §1 of our 
paper. 

In §2 we give some fixed point results for a family of operators 
with p = 1. 

1. THEOREM 1. Let (X, d) be a generalized complete metric space,8 and 
{ Ti} i,»if2,... a family of self-mappings of X, closed under composition, 
such that 

(1) There exist constants 0 0 , 0 ^ p < l , and an integer m ^ l such 
that if x, yÇzX and d(x, y) ^ C, then 

d(Tm+kx, Tm+ky) g pd(x, y); * = 0, 1, 2, • • •. 

(2) T^Tj-TjT^iJ-1,2, • • -. 
(3) Let XoZEX be arbitrary, and define xn = Tnxn-i (n=l, 2, • • • ). 

Then there exists N(x0) such that d(Tn+kxn, xn)^C, for n*zN, 
k = l, 2 • • • . 

Then, there exists a %Çï.X such that xn—*t; and Tn%--±% as n—> <*>. 
Furthermore, (if) 
1 Research sponsored by Fundación Bariloche, Repûblica Argentina. The author is 
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(4) Tnx-*x, Tny-^y as w—»oo=»d(#, y)^C then £ is unique, and 
rM .*€«€(* a a 8max(m,iV);* = 0,l> • • • ). 

(In each case, convergence refers to convergence in the metric d.) 
REMARKS, (a) When m = 1, we have Monna's Theorem, with Edel-

stein's completion of it. 
(b) Example 1 will show that our Hypothesis 1 is strictly more 

general than Monna's. 
(c) If ï \ = T* (i = 1, 2, • • • ) the conclusion means that £ is periodic 

under T with period not greater than max(w, N). 
(d) Since £ is unique, and Tk% = TkTh% = ThTk%, we have !*£ = £, and 

£ is actually a fixed point of all Tk (k = 1, 2, • • • ). 
PROOF OF THEOREM 1. I t will not be given in detail, since it follows 

mainly the procedures used by Luxemburg and Monna. 
Let XQÇ.X. Then, in the usual manner, it can be shown that for 

n^N+m: d(xn+hy xn)Spn~~N~~m C(l— p)_ 1 , and all results follow like 
in Luxemburg, Monna and Edelstein. 

We observe, letting h—>oo, that the last inequality gives an esti­
mate of the rate of convergence of the sequence {xn}, namely 

d(xny Q g p - * - C ( l - p)-\ 

EXAMPLE 1. L e t X = {x = ei6/0^d^T/2} and, for;*:,y£X, define 

d(x, y) = 0, if ft, = By = TT/2, 

= | tg Bx — tg By | , otherwise. 

Clearly, d(x, y)=0 iff x = y, d(x, y)—d{y, x), d(x, y)^d(x, z) 
+d(y, z), îor x, yf zEX. 

Assume {xn = eiBn} is a Cauchy sequence in {X, d). Since, for 
m, n*£no, d(xm, xn) is bounded, we have that either 8n = 0 = ir/2 for 
n^nof or O^0n<7r/2—e for some e>0 , n^nQ. In the last case, since 

<*(*», Xn) = | tg Bn - tg Bm I = I tg (0„ - ft») I I 1 + tg 0»-tg Bm | 

^ | tg (ft. - ft») | , 

we have that {9n} is a Cauchy sequence in [0, 7r/2—e]; hence, 6n-+d 
as n—>oo. Let # = e**. In any case, d(xn, #)—»0 as »—•«>, and (X, d) is a 
generalized complete metric space. 

Define T: X-+X as follows 

Tx = ei0, 

s e<(«+*/8) 

— g* (0-8*78) 

= e*°, 

0 ^ 0 < TT/8, 

TT/8 ^ 0 < 3TT/8, 

3TT/8 ^ 0 < T / 2 , 

0 = T / 2 . 
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Then 
T2x = ei0, 0 S 0 < TT/8, 

= ew+«i*\ TT/8 :g 0 < TT/4, 

= eW-«t*\ TT/4 £ 6 < 3TT/8, 

= è\ 3x/8 è 0 g T/2. 

T*x = è\ 0 g 0 < TT/8, 

= ew-*i*\ x/8 g 0 < T / 4 , 

= e<°, x/4 ^ 0 g TT/2, 

T4x = e<° O ^ ö g v/2. 

Hence, neither T nor T2 nor T3 satisfy Hypothesis 1 of Theorem 1, 
for they are not continuous. Obviously, TA satisfies this condition 
with arbitrary C > 0 and arbitrary p, 0 ^ p < l , so that in this case 
w = 4. 

As for Hypothesis 3 of the Theorem, let Xo = eido. I t is not difficult 
to see that if, for instance, C = 1, and: 

(a) O^0o<7r/8, then N(x0)=0. 
(b) x /8^0o<37r /8 , then N(x0) = 2. 
(c) 3?r/8 ^ 0o g TT/2 , then iV(*0) = 1. 

Condition 4 clearly holds. 

Also, Remark (d) implies that TXO~XQ iff Xo = eie. 

2. Our aim now is to obtain similar results for a family of operators 
satisfying Hypothesis 1 of Theorem 1 with a strict inequality sign and 
p = 1. We will have to add some further requirements, for even with 
Ti=T the theorem would not hold. (See, for instance, [4, Remark 
2].) 

THEOREM 2. Let (X, d) be a generalized complete metric space, and 
{7\}*-i,2,... a family of self-mappings of X, such that 

(1) There exist a constant O O and an integer m*zl such that if 
x,yÇEXandO<d(x,y)^Cthend(Tm+kX,Tm+ky)<d(x,y);k~0,l, • • • . 

(2) TiT^TjTi-iJ-Ul, • • .. 
(3) Let XoG-XT be arbitrary, and define xn — Tnxn-\ (tt = l, 2, • • • )• 

Then there exists N(XQ) such that 
(a) d(Tn+kxn, xn)SC; n^N, & = 1, 2, • • - , 

d{Tn+ic+iXn+i+2> #n+t+2/ d(Tn+k+l%n+i+l> #n-f*+l) 
(b) 5s y 

d(Tn+k+iXn+i+i, Xn+i+i) d(Tn+k+l%n+ij #n+t) 
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whenever the denominators do not vanish and n^N, k = l, 2, • • • ; 
O^i^k-1. 

d(Tn+k+l%n+l, %n+l) ^ d(Tn+kXn+l, #n-f l) , A ^ 

(c) g ; k = 1, 2, • • • , 

whenever the denominators do not vanish. 
(4) Tpx = x, Tpy = y,p^m=ïd(x, y) S C. 
Then, there exists a £ £ X such that #„-->£, and rw£—>£ as n—> oo. 
Furthermore, if 
(5) For some integer h^m: ThTi=Th+i ( i = l , 2, • • • ) (and hence 

{Ti] is a finitely generated semigroup), then £ is unique, and 7\£ = £; 
i = l , 2, • • • . 

(In each case, convergence refers to convergence in the metric d.) 
REMARKS, (a) When 7 \s=r , condition (3c) is obviously satisfied. 

Moreover, in this case, although (5) implies the trivial transformation 
Tx = £, VxÇzX, we get the whole conclusion without it. 

(b) When 7\- = t \ (5) holds for any integer h, and hence £ is fixed 
under f. 

Before proving the Theorem, we need the following 

LEMMA. If for some integer h^m, and some integer p, we have 
ThXp = Xp, then Xp = Xp+i = Xp+2 = • • • = £ . Furthermore, Th+i&~% for 
k^K(p,h). 

PROOF. Let ThXp = xp. Then ThTp+ixp— Tp+iThXp= Tp+ixp, i.e. 
Assume ThXp+j = Xp+j 0 > 1 ) . Then 

J- h%p+j+l = * h± p+j+l%p+j z==' * p+j+l* h%p+j == J- p+j+l%p+j == %p+j+ly 

I.e. I h$p-\-q:=z %p-\-q\ Q= " > A t ^>j * ' * • 

Hence d(xp+q, Xp+q>)=d(ThXp+q, Thxp+q'), contradicting (1), unless 
Xp+q^Xp+q') for, by (4), d(xp+q, xp+q')SC. Therefore, all elements in 
the set {ffp+ff}fl-o,i,"- coincide. Call their common value £. Choose K 
so large that h+K — p + 1 (in case h>p, take K = 0). Then, if k 
^K: 7VM,£ = Th+kXh+k-i^Xh+k^Ç, and our Lemma is proved. 

PROOF OF THE THEOREM. We will assume that no element of the 
set {tfn}n*m is fixed under any of the elements of { Tk}kam- Otherwise, 
by the Lemma, the first part of the theorem would be already proved 
(and even the second one, if h = 1 and K = 0). 

Define p{(x, y)=d(TiX, T{y)/d(x, y), for 0<d(x, y)£C. Let N be 
the index specified in (3). Without loss, we may assume N^m. (If 
not, we take a suitable Nf>N.) 
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Then d(xN+i, %N) â C, 

d(%N+2, %N+I) = CI{TN+2%N+U XN+I) = CI(TN+2TN+IXN> TN+X%N) 

= d{TN+lTif+2%Ni TN+1%N) 

^ CPN+I(TN+2XN, XN), 

where we used (2), (3a) and the definition of pt-(#, y). 
Using the same arguments 

d(Xtf+3, XN+2) = ^(7 , JV + 3^JV+2> %N+2) = d(TN+zTN+2XN+l, TN+2%N+I) 

= d(TN+2TN+zXN+i, TN+2XN+\) 

= PN+2(TN+ZXN+1, XN+1)d(Tx+zXN+i, Xtf+i) 

— PN+2(TN+ZXN+I, XN+i)d{TN+zTx+iXN, TN+IXN) 

= PAT-t.2(7,JV+3̂ iNT+l> XN+l)d(TN+iTN+zXN, TN+IXN) 

= PJV-+-2(T'iV-f.3̂ 2V-h 1, XN+\)PN+ l(Ttf+zXtf, XN)d(Tw+zXN} XN) 

g CPN+2(TN+ZXN+I, XN+I)PN+I(TN+ZXN, XN). 

And, in general 
k-i 

d(XN+k+l, XN+JC) ^ C J I Pi^+t-+i(riv+A;4-l^iV4-t, XN+i) 

sen 
= C[pjv+i(r^+A;4.i^isr, r̂ iv)]* 

g C[pjNr+i(rjNT4.î JV, ##)]* 

where we used (3b) and (3c). (We note that pt(x, y) is well defined 
for all elements in the sequence, because of the assumption made at 
the beginning of the proof.) 

Now, let n^N, say n = N+q. Then 

p— 1 p—i 

(#) d(#w+p, #„) ^ 2w d(xn+k+ly Xn+k) = Z ^ ^ ( ^ + « + ^ + 1 , XN+q+k) 
ft«*0 Jfc«0 

p—1 3+AJ 

^ 2 C[piV+l(riST+l̂ iV, ##)] 

g C[p^+i(TiV4-î isr, ff*)]"""*/^ — AY+i(7V+iafr, xN)) 

for, by definition, 0^p t (x , y)<l, (i^m). 
Hence, {xn} is a Cauchy sequence. Therefore, there exists a £ £ X 

such that #»—»£ as #—» 00. Also 
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d(Tn^ © =g d(Tnt, xn) + d(xn, Q 
= d(T£, TnXn-l) + d(xn, Q 
< dfaXn-x) +d(xn,£), 

since for n>v1 d(xn-u £) ^ C. 
Therefore, Tn%—>% as #—><*>, and we have the first part of our 

theorem. 
From (#), on making p-+ <x>, we get an estimate of the rate of con­

vergence of {xn}, namely 

d(xn, £) ^ Cky+i(2V+i3fr, ^j\r)]n""V(l — PN+I(TN+IXN, xN)). 

•Assume now (5) holds. Hence d(7\7\£, T£)=d{Th+i$;, T^). If we 
let i—>oo, since 7 \ is continuous, the first member tends to d(Th^ £), 
while the second one tends to zero. Hence, r ^ = £. 

•Assume TiYj-^rj as i—»<*>. Then, as before, Thrj=r}. Furthermore, by 
(4) d(£, rj)^C. If £5^?/, we would have d(£, rj)~d{Th$;, Thr)), contra­
dicting (1), for h*ttn. Hence, d(%f rj) = 0 and £ is unique. 

Since 7\£= JT»Z\£ = ThT&> and £ is a unique fixed point of 7\, we 
have 7\£ = § ( i= 1, 2, • • • ) concluding thus the proof of our theorem. 

Finally, we give three examples to illustrate the extents and limita­
tions of our results. The first one is a direct application of Theorem 2, 
for which no previous results can be used. The second one shows that 
condition (3b) is by no means necessary. To counterballast this, the 
last example shows a transformation without fixed points, which does 
not fulfill requirement (3b). 

EXAMPLE 2. Let X= {x~eie/0^d^37r/2}, d(x,y) = \x-y\ 
= 2 | s i n ( ( 0 . - 0 , ) / 2 ) | . 

Define T: X-+X such that Tx = eie*lz (i.e. T t = r , all i). Let 0 < C 
<2 1 / 2 . Hence, it is clear that d(Tx, Ty)<d{xy y) for 0<d(x, y)£C. 
(The inequality can not be improved, for d(Tx, Ty)/d(x, y)—»1 when 
x—>ei0, y—>eiz*12.) 

Let Xo = eidÇzX, arbitrary. Then, xn=Txn-i = eiBlzn = ei6n. Since 
d(xn+i, xn) = 21 sin ((0»+i—0»)/2) | = 2 |sin (0/3n+1) |, it is clear that for 
n è Ni(xo), d(xn+h xn) ^ C, and we have (3a). 

In order to show (3b), we observe that in this case the condition 
reduces to 

d(xn+Z, Xn+2)/d(xn+2, Xn+l) ^ d(xn+2, Xn+i)/d(xn+l, Xn) 

when n^N(xo) and the denominators do not vanish. This last alter­
native occurs only when 0 = 0, where the final result is trivial. So that 
we may assume 0?*O. Let <£ = 0/3w+8. With this notation, (3b) will 
hold if and only if 
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2 sin <j>/2 sin 30 S 2 sin 30/2 sin 90. 

Clearly, taking w^iV2(xo), we will have O^90^§7r/2. 
Consider the function ƒ(/) = sin 3//sin£ = 2 cos2 /+cos 2t, 0 < / ^ 7 r / 2 . 

A simple computation shows ƒ'(/)<(). Hence, ƒ(/) decreases, and 
sin 2/sin 3/ increases with /. In particular sin 0/sin 30 < sin 30/sin 90, 
which is precisely what we wanted to prove. 

As stated in Remark (a), (3c) is obviously satisfied. 
Also, condition (4) is immediate. 
Hence, we can apply our Theorem and conclude: #«—»£ = £t0 as 

n—><», and r£ = £. 
We observe that neither Theorem 1 nor Theorem 3 in [5] can be 

used in this case, whereas Theorem 2 in [S] asserts at best the 
periodicity of £. 

EXAMPLE 3. Let X be the nonnegative reals with the Euclidean 
metric. Define T: X—>X by Tx~x/(x + l). I t is easy to show that 
d(Tx, Ty)<d(x, y) whenever X9±yy so that C > 0 can be chosen arbi­
trarily. 

Let XoÇEX, #03^0, xn = Txn-i. (The case #0 = 0 is trivial.) Hence 
Xn—Xoinxo + l)"1 and 

d(xn+i, xn) — x0/[(n + l)x0 + l](nx0 + 1). 

Therefore 
2 

d(Xn+Z, Xn+2) d(xn+1> Xn+l) 2XQ 

d(#n+2, *n+l) d(xn+l, #n) [(^ + 3)x0 + l][(fl + 2)x0 + l] 

and hence (3b) is not satisfied. Nevertheless, xn—>0ÇzX as n—>oo, 
TO = 0, and 0 is the only element with this property. 

EXAMPLE 4. We will use Rakotch's example mentioned at the 
beginning of this Section. 

Let X be the nonnegative reals with the Euclidean metric, and 
Tx = ln(l+ex). As shown there d(Tx, Ty)<d(x, y) whenever x?*y, 
so that 0 0 can be chosen arbitrarily. Let x0ÇzX, Xo^O, and 
xn= Txn-i* (The case x0 = 0 is trivial.) Hence, as shown by induction 
Xn = ln(n+exo). Since d(xn+i, xn)=ln(l+l/(n+exo)), we see that for 
n^N(x0), d(xn+li xn)SC. Let ƒ(*) = ( l n ( ( / + 2 ) / ( / + l ) ) / ( l n ( / + l ) / / ) ) , 
t> 1. Clearly, f{t) < 1, and / ( / ) -> l as t-*00. 

Also, 

r (t) = [(/ +1) in2 at + i)/o]-i 
• [(1/0 In ((/ + 2)/(/ + 1)) - (l/(* + 2)) In ((/ + l)/t)]. 
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Assume that for some s> 1, f(s) = 0. Hence, we have the following 
chain of equivalences. 

ƒ'(,) = 0 ^ 1 n ( ( * + 2 ) / ( s + l ) ) < + 2 

= In ((s + l)/s)< « (1 + l/(s + 1))«+2 = (1 + 1/s): 

Therefore (1 + 1A)*> (l + l / 0 + l))8+1 , which is clearly impossible, 
for the function (1 + 1/2)* increases with L Therefore, f (t) has con­
stant sign. If it were ƒ(t) < 0 , then ƒ(/) would be a decreasing function, 
and since ƒ (t)—>l when /—»oo, we would have ƒ(/) ^ 1, which is impos­
sible. Therefore, f(t) is increasing. In particular: f(n + l+exo) 
>f(n+exo), i.e. (3b) does not hold. 

I t is obvious that xn—>oo (£X, Txn—^^o as #--»oo, and furthermore 
T does not have any fixed points in X. 
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