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1. Introduction. The object of this paper is to study the isometries 
of the Z>-spaces, l^p< <», associated with a faithful normal semi-
finite trace on a von Neumann algebra M, and their connections with 
*-automorphisms of M (see [2], [8] for Z,p-spaces, [3] for von Neu­
mann algebras). As is well known, every *-autornorphism (or ^an t i -
automorphism) of a finite factor M induces an LMsometry on M. 
The problem we consider is the converse: under what conditions does 
an Zp-isometry induce a *-automorphism? Our purpose is to provide 
a method for constructing *-automorphisms of von Neumann alge­
bras. 

The author wishes to acknowledge many helpful discussions with 
Noboru Suzuki concerning this paper. 

2. Preliminaries. Let M be a von Neumann algebra with a faithful 
normal semifinite trace #. Let m^ be the ideal of trace operators rela­
tive to<£ (see [3, p. 80]). If 0<ce< + °°, m% denotes the ideal in M 
whose positive elements are the operators x" for x a positive operator 
in % . We have rn^Qm^ if O J ^ ] 8 > 0 . If </> is finite then M=tn<j, = tnl 
[2, p. 10]. For \Sp< °° the set m%v equipped with the norm \\x\\p 

= 0 ( | x | p ) 1 / p ( | x | =(x*x)112) is a complex normed linear space, whose 
completion is called the Z>-space associated with <j> and M (see [2, pp. 
23-27]). We denote this space by Lp(</>). L°°(#) denotes the space M 
with the operator norm. I t is known that i°°(0) is the Banach space 
dual of Ll{<}>) [3, p. 105], and that Lp(cj>) is the Banach space dual of 
Lq(<j>) where l<p< <*> and l/p + l/q=l, [2, p. 27]. We use the sym­
bol ( , ) to denote these dualities and remark that if xÇEml/v and 
yGm^8 , then (x, y)=<t>{xy) (here, if £ = 1, m^Q denotes the strong 
closure of m^) [2, p. 27]. The space mj /2, with the inner product 
(x\ y) =<l>(y*x), is a pre-Hilbert space whose completion is none other 
than L2(0). 

If i f acts on a Hubert space H, a, closed dense linear transformation 
z in H is affiliated with M if uzur^ — z for all unitary operators u in 
the commutant of M (see remark following Theorem 1). 

1 This work was supported by the National Science Foundation, under grant 
number GP-5436. 
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3. The isometries. The isometries of L°°(<l>) have been completely 
determined in [5]. The result, which will be used below, is that a 
linear operator norm isometry ( = L°°-isometry) T of any von Neu­
mann algebra M onto M has the form x—>up(x) where u is a unitary 
operator in M and p is a C*-automorphism ( = Jordan ^automor­
phism) of M, that is, p(x2) =p(x)2 and p(x)*=p(x*), [5, Theorem 7]. 
Each C*-automorphism p of M is the direct sum of a *-isomorphism 
and a *-anti-isomorphism in the following sense: there is a central 
projection e in M such that x—*p(x)e is a *-isomorphism and 
x—>p(x)(l-~e) is a *-anti-isomorphism, [5, Theorem 10]. Thus each 
C*-automorphism of a factor is either a *-automorphism or a *-anti-
automorphism. 

THEOREM 1. Let M be a von Neumann algebra with a faithful finite 
normal trace 0, and let T be a linear isometry of Lx{4>) onto Ll(<p). 
Then there is a C*-automorphism a of M, a positive operator s£Z2(0) 
affiliated with the center Z of M, and a unitary operator u in M such that 

T(x) = a(x)z2u, x&M. 

REMARK. Since z may be unbounded, all products or sums of op­
erators involving z are "strong products" and "strong sums," as 
defined in [8, p. 414]. 

COROLLARY. If in Theorem 1, M is a factor and r ( / ) = J , then T 
(restricted to M) is a *-automorphism or a *'-anti-automorphism of M. 

PROOF OF THEOREM 1. The Banach space dual T~l* of T~x is an 
isometry of L°°(<t>). Thus T~**(x) =wa(x), xÇzM, where w is unitary 
in M and ce is a C*-automorphism of M. There is an isometry S of 
L 1 ^) such that S* = a. Thus if xEM, y EM, then (T-^x), y) 
= (x, T~~l*(y)) = (x, waiy^ — ixw, a(y)) = (S(xw), y). Hence 

(1) T-\x) = S(xw)% xEM. 

Using [l, Théorème 2] there is a positive operator z affiliated with 
the center of M such that x—>za(x) acts as an LMsometry on M. 
Thus if xEM, then z and a(x)z belong to L2(<j>), so by Holder's 
inequality [8, Corollary 12.9], a(x)z2 belongs to Ll(<t>). We assert that 
for x, yEM, (a(x)z2

t a(y))— (za(y) | za(x*)). Indeed, this is trivial if z 
belongs to M. Otherwise, write s=Jo\de\ where £\£Z [3, p. 17]. Then 
Zn^f" \de\EZ and it is easy to check that znz = zzn and ||*»—s||r-»0 
(cf. [8, Corollary 12.13]). Hence 

I ) / - *L||i « | |(2 + %m)(z - 2») | | i S \\z + *m\\ll\z - 3m||2~->0. 
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Thus 

(a(x)z\ a(y)) = lim {a(x)z\} a(y)) 
n 

= lim (zna(y) | z«a(x*)) = (z<x(y) \ za(%*)) 
n 

proving the assertion. Now if x, yÇEM, 

(S{a(x)z*), y) « {a(x)z\ a(y)) « (za(y) \ za(x*)) - (y | **) - <*, y>, 

so that S(a(ff)s2)=a;, #Eikf. Combining this with (1) yields T(x) 
= a(x)z2w^1

i xÇzM, which proves the theorem. 
If M is a von Neumann algebra we denote by Mh the real Banach 

space of self ad joint operators in M, by M+ the cone of positive op­
erators in Jlf, by Mp the lattice of projections in M, and by Sh the 
convex set of all self ad joint operators in M of operator norm at most 
one. 

THEOREM 2. Let M be a von Neumann algebra with a faithful normal 
finite trace <j>} and let Tbea linear Lp-isometry of M onto M for some p, 
1 ̂ p < oo. Then (i) T is a C*-automorphism of M if% and only if, one of 
the following conditions is satisfied: 

(ii) T(M+)CM+ and T(I) = I; 
(iii) T(Mp)CMP; 
(iv) T(Sh)CShand T(I)=I. 

COROLLARY 1. In Theorem 2, if M is a factor then T is either a 
^-automorphism of M or a *'-anti-automorphism of M. 

COROLLARY 2. In Theorem 2, if M is a factor and p~l or p — 2 the 
assumption T(I)—I may be dropped in condition (ii). 

PROOF OF THEOREM 2. (i)=*(iv). This is known [5, Theorem 5]. 
(iv)=>(iii). We may assume that 0(1) = 1. If u is selfadjoint and 

unitary in My then t = T{u) is selfadjoint, ||*|| g 1 and <t>(\ t\ 9)ltp = \\t\\9 

= | | t t | |p=l. Thus 0 ( J - | / | * ) = O so that t is unitary. Now if eEMP, 
then ƒ—2e is selfadjoint and unitary, I—2T(e) is selfadjoint and 
unitary, so that T(e)Ç~Mp. 

(iii)=»(ii). Note first that T is bounded in the Z°°-norm. This fol­
lows from the closed graph theorem and the identity j|ff||p:g||#||, 
xEM. Next T(I)EMP, say T(I)=e9 and l~\\l\\p = \\e\\p=<l>(ep)Up 

=<t>(e)llp. Hence #(/—e) = 0 which implies that e = J. Now let a£Jlf+. 
By the spectral theorem a is the limit in L°°-norm of operators 6/ of the 
form b,= ]C?ii t̂<5» where X,^0 and ei, • • • , enj are orthogonal pro­
jections in M. Since T(bj) belongs to M+, so does T(a). 
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(ii)=»(i). By [7, Corollary l],T has L°°-norm 1. Thus if u is unitary 
in M and t=T(u), then | | / | |g l , |M|p = l, so that # ( / - | / | " ) = 0 which 
implies that t is unitary. The result now follows from [7, Corollary 2]. 

The proof of Corollary 2 rests on the following 

LEMMA. Let M be a von Neumann algebra with a faithful normal semi-
finite trace <£, and let T be an Lp-isometry of M onto M for p = 1 or p = 2. 
If a, SGAf+nm*, and a& = 0, then T(a)T(b) = 0. 

PROOF. The case p~2 can be found in [l, Lemma 2]. Since ab~0 
we have ||a±&||i«tf(|a±&| )==<£((a2+J2)1'2). Thus | |a-6| | i = ||a+6||i 
=^(a+&)=0(ö)+0(i) = ||a||i+||6||i. The map x—rfx, x(E?n<t>, where 

fx is the linear functional y—^<j>{xy) on M, is linear, self adjoint, positive 
and norm preserving in the sense that IHIiHWI & P- 105]. Thus 

| | /rw - *»>|| - \\fr<*-»\\ - | |r(a - «||i - II* - *||i - Mli + ||*||i 

- ||rc«)IU + l|arc«||» - llA-oll -*- ll/«-c»>l|. 

By [4, p. 243], fr(a) and fnb) have disjoint supports [3, p. 61]. It 
follows that T(a)T(b) = 0. 

PROOF OF COROLLARY 2. Since M is a factor it suffices to show that 
T(I) commutes with T(x) for all xÇ-M. We may assume x is a projec­
tion p. By the Lemma, Tip) and T(I) — Tip) have zero product which 
implies that T(I) commutes with Tip). 

It is interesting to note that in the case p = 2 of Theorem 2, condi­
tion (ii) cannot be weakened. The trivial example T(x) = —x shows 
that we must assume T(I) = I. Furthermore, we can show the theorem 
to be false if (ii) is replaced by the weaker condition (ii') T(Mh)QMh 

and Til) = I. To see this suppose that an LMsometry of a finite factor 
M satisfying (ii') is always a *-automorphism or a *-anti-automor-
phism. Let N be a subfactor of M. Using [2, Théorème 8] each ele­
ment x in M has a unique decomposition # = #i+#2 where XiÇzN and 
#2 is an element of M of trace 0. If a is a *-automorphism of Nt the 
mapping â(x) —aixi)+x% is a linear LMsometry of M satisfying (ii'), 
so according to our supposition is a *-automorphism of M. If for 
example we let N be the hyperfinite factor and we let M be the 
crossed product of N by a group G of order 2 of outer ""-automor­
phisms of N (see [9]), then the above discussion implies that an arbi­
trary *-automorphism of N commutes with each *-automorphism of 
N of order 2, which is absurd. 

4. Remarks. 1. The extension of Theorems 1 and 2 to the semifinite 
case is open. For p — 2 this has been done by M. Broise [l] for condi­
tions (i) and (ii) of Theorem 2. 
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2. The extension of Theorem 1 to the case 1 <p < oo, p7*2, is open. 
If M is commutative and semifinite, this extension is known [6, 
Theorem 3.1]. 

3. The results of this paper should prove to be useful for attacking 
the extension problems of ^-isomorphisms between subalgebras of 
von Neumann algebras and therefore for constructing outer '"-auto­
morphisms on factors of type Hi. We propose to investigate this in a 
subsequent paper. 
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