ISOMETRIES OF L*-SPACES ASSOCIATED WITH FINITE VON NEUMANN ALGEBRAS

BY BERNARD RUSSO1

Communicated by Bertram Yood, October 19, 1967

1. Introduction. The object of this paper is to study the isometries of the L^p -spaces, $1 \le p < \infty$, associated with a faithful normal semifinite trace on a von Neumann algebra M, and their connections with *-automorphisms of M (see [2], [8] for L^p -spaces, [3] for von Neumann algebras). As is well known, every *-automorphism (or *-antiautomorphism) of a finite factor M induces an L^2 -isometry on M. The problem we consider is the converse: under what conditions does an L^p -isometry induce a *-automorphism? Our purpose is to provide a method for constructing *-automorphisms of von Neumann algebras.

The author wishes to acknowledge many helpful discussions with Noboru Suzuki concerning this paper.

2. Preliminaries. Let M be a von Neumann algebra with a faithful normal semifinite trace ϕ . Let m_{ϕ} be the ideal of trace operators relative to ϕ (see [3, p. 80]). If $0 < \alpha < +\infty$, m_{ϕ}^{α} denotes the ideal in M whose positive elements are the operators x^{α} for x a positive operator in m_{ϕ} . We have $m_{\phi}^{\alpha} \subset m_{\phi}^{\beta}$ if $\alpha \geq \beta > 0$. If ϕ is finite then $M = m_{\phi} = m_{\phi}^{1}$ [2, p. 10]. For $1 \le p < \infty$ the set $m_{\phi}^{1/p}$ equipped with the norm $||x||_{x}$ $=\phi(|x|^p)^{1/p}(|x|=(x^*x)^{1/2})$ is a complex normed linear space, whose completion is called the L^p -space associated with ϕ and M (see [2, pp. 23-27]). We denote this space by $L^p(\phi)$. $L^{\infty}(\phi)$ denotes the space M with the operator norm. It is known that $L^{\infty}(\phi)$ is the Banach space dual of $L^1(\phi)$ [3, p. 105], and that $L^p(\phi)$ is the Banach space dual of $L^{q}(\phi)$ where 1 and <math>1/p+1/q=1, [2, p. 27]. We use the symbol \langle , \rangle to denote these dualities and remark that if $x \in m_{\phi}^{1/p}$ and $y \in m_{\phi}^{1/a}$, then $\langle x, y \rangle = \phi(xy)$ (here, if p = 1, $m_{\phi}^{1/a}$ denotes the strong closure of m_{ϕ}) [2, p. 27]. The space $m_{\phi}^{1/2}$, with the inner product $(x|y) = \phi(y^*x)$, is a pre-Hilbert space whose completion is none other than $L^2(\phi)$.

If M acts on a Hilbert space H, a closed dense linear transformation z in H is affiliated with M if $uzu^{-1}=z$ for all unitary operators u in the commutant of M (see remark following Theorem 1).

¹ This work was supported by the National Science Foundation, under grant number GP-5436.

3. The isometries. The isometries of $L^{\infty}(\phi)$ have been completely determined in [5]. The result, which will be used below, is that a linear operator norm isometry $(=L^{\infty}\text{-isometry})$ T of any von Neumann algebra M onto M has the form $x \rightarrow u\rho(x)$ where u is a unitary operator in M and ρ is a C^* -automorphism (= Jordan *-automorphism) of M, that is, $\rho(x^2) = \rho(x)^2$ and $\rho(x)^* = \rho(x^*)$, [5, Theorem 7]. Each C^* -automorphism ρ of M is the direct sum of a *-isomorphism and a *-anti-isomorphism in the following sense: there is a central projection e in M such that $x \rightarrow \rho(x)e$ is a *-isomorphism and $x \rightarrow \rho(x)(1-e)$ is a *-anti-isomorphism, [5, Theorem 10]. Thus each C^* -automorphism of a factor is either a *-automorphism or a *-anti-automorphism.

Theorem 1. Let M be a von Neumann algebra with a faithful finite normal trace ϕ , and let T be a linear isometry of $L^1(\phi)$ onto $L^1(\phi)$. Then there is a C^* -automorphism α of M, a positive operator $z \in L^2(\phi)$ affiliated with the center Z of M, and a unitary operator u in M such that

$$T(x) = \alpha(x)z^2u, \quad x \in M.$$

REMARK. Since z may be unbounded, all products or sums of operators involving z are "strong products" and "strong sums," as defined in [8, p. 414].

COROLLARY. If in Theorem 1, M is a factor and T(I) = I, then T (restricted to M) is a *-automorphism or a *-anti-automorphism of M.

PROOF OF THEOREM 1. The Banach space dual T^{-1*} of T^{-1} is an isometry of $L^{\infty}(\phi)$. Thus $T^{-1*}(x) = w\alpha(x)$, $x \in M$, where w is unitary in M and α is a C^* -automorphism of M. There is an isometry S of $L^1(\phi)$ such that $S^* = \alpha$. Thus if $x \in M$, $y \in M$, then $\langle T^{-1}(x), y \rangle = \langle x, T^{-1*}(y) \rangle = \langle x, w\alpha(y) \rangle = \langle xw, \alpha(y) \rangle = \langle S(xw), y \rangle$. Hence

$$(1) T^{-1}(x) = S(xw), x \in M.$$

Using [1, Théorème 2] there is a positive operator z affiliated with the center of M such that $x \to z\alpha(x)$ acts as an L^2 -isometry on M. Thus if $x \in M$, then z and $\alpha(x)z$ belong to $L^2(\phi)$, so by Hölder's inequality [8, Corollary 12.9], $\alpha(x)z^2$ belongs to $L^1(\phi)$. We assert that for $x, y \in M$, $\langle \alpha(x)z^2, \alpha(y) \rangle = (z\alpha(y)|z\alpha(x^*))$. Indeed, this is trivial if z belongs to M. Otherwise, write $z = \int_0^\infty \lambda de_\lambda$ where $e_\lambda \in Z$ [3, p. 17]. Then $z_n \equiv \int_0^n \lambda de_\lambda \in Z$ and it is easy to check that $z_n z = zz_n$ and $||z_n - z||_2 \to 0$ (cf. [8, Corollary 12.13]). Hence

$$||z^2-z_m^2||_1=||(z+z_m)(z-z_m)||_1\leq ||z+z_m||_2||z-z_m||_2\to 0.$$

Thus

$$\langle \alpha(x)z^2, \alpha(y) \rangle = \lim_{n} \langle \alpha(x)z^2_n, \alpha(y) \rangle$$

= $\lim_{n} (z_n\alpha(y) \mid z_n\alpha(x^*)) = (z\alpha(y) \mid z\alpha(x^*))$

proving the assertion. Now if $x, y \in M$,

$$\langle S(\alpha(x)z^2), y \rangle = \langle \alpha(x)z^2, \alpha(y) \rangle = (z\alpha(y) \mid z\alpha(x^*)) = (y \mid x^*) = \langle x, y \rangle,$$

so that $S(\alpha(x)z^2) = x$, $x \in M$. Combining this with (1) yields $T(x) = \alpha(x)z^2w^{-1}$, $x \in M$, which proves the theorem.

If M is a von Neumann algebra we denote by M_h the real Banach space of selfadjoint operators in M, by M^+ the cone of positive operators in M, by M_P the lattice of projections in M, and by S_h the convex set of all selfadjoint operators in M of operator norm at most one.

THEOREM 2. Let M be a von Neumann algebra with a faithful normal finite trace ϕ , and let T be a linear L^p -isometry of M onto M for some p, $1 \le p < \infty$. Then (i) T is a C^* -automorphism of M if, and only if, one of the following conditions is satisfied:

- (ii) $T(M^+) \subset M^+$ and T(I) = I:
- (iii) $T(M_P) \subset M_P$:
- (iv) $T(S_h) \subset S_h$ and T(I) = I.

COROLLARY 1. In Theorem 2, if M is a factor then T is either a *-automorphism of M or a *-anti-automorphism of M.

COROLLARY 2. In Theorem 2, if M is a factor and p=1 or p=2 the assumption T(I)=I may be dropped in condition (ii).

PROOF OF THEOREM 2. (i) \Rightarrow (iv). This is known [5, Theorem 5]. (iv) \Rightarrow (iii). We may assume that $\phi(I) = 1$. If u is selfadjoint and unitary in M, then t = T(u) is selfadjoint, $||t|| \le 1$ and $\phi(|t|^p)^{1/p} = ||t||_p = 1$. Thus $\phi(I - |t|^p) = 0$ so that t is unitary. Now if $e \in M_P$, then I - 2e is selfadjoint and unitary, I - 2T(e) is selfadjoint and unitary, so that $T(e) \in M_P$.

(iii) \Rightarrow (ii). Note first that T is bounded in the L^{∞} -norm. This follows from the closed graph theorem and the identity $||x||_p \le ||x||$, $x \in M$. Next $T(I) \in M_P$, say T(I) = e, and $1 = ||I||_p = ||e||_p = \phi(e^p)^{1/p} = \phi(e)^{1/p}$. Hence $\phi(I-e) = 0$ which implies that e = I. Now let $a \in M^+$. By the spectral theorem a is the limit in L^{∞} -norm of operators b_j of the form $b_j = \sum_{i=1}^{n_j} \lambda_i e_i$ where $\lambda_i \ge 0$ and e_1, \dots, e_{n_j} are orthogonal projections in M. Since $T(b_j)$ belongs to M^+ , so does T(a).

(ii)⇒(i). By [7, Corollary 1], T has L^{∞} -norm 1. Thus if u is unitary in M and t = T(u), then $||t|| \le 1$, $||t||_p = 1$, so that $\phi(I - |t|^p) = 0$ which implies that t is unitary. The result now follows from [7, Corollary 2].

The proof of Corollary 2 rests on the following

LEMMA. Let M be a von Neumann algebra with a faithful normal semifinite trace ϕ , and let T be an L^p -isometry of M onto M for p=1 or p=2. If a, $b \in M^+ \cap m_{\phi}$, and ab = 0, then T(a)T(b) = 0.

PROOF. The case p=2 can be found in [1, Lemma 2]. Since ab=0we have $||a\pm b||_1 = \phi(|a\pm b|) = \phi((a^2+b^2)^{1/2})$. Thus $||a-b||_1 = ||a+b||_1$ $=\phi(a+b)=\phi(a)+\phi(b)=||a||_1+||b||_1. \text{ The map } x\to f_x,\ x\in m_\phi, \text{ where}$ f_x is the linear functional $y \rightarrow \phi(xy)$ on M, is linear, selfadjoint, positive and norm preserving in the sense that $||x||_1 = ||f_x||$ [3, p. 105]. Thus

$$||f_{T(a)} - f_{T(b)}|| = ||f_{T(a-b)}|| = ||T(a-b)||_1 = ||a-b||_1 = ||a||_1 + ||b||_1$$
$$= ||T(a)||_1 + ||T(b)||_1 = ||f_{T(a)}|| + ||f_{T(b)}||.$$

By [4, p. 243], $f_{T(a)}$ and $f_{T(b)}$ have disjoint supports [3, p. 61]. It follows that T(a)T(b) = 0.

Proof of Corollary 2. Since M is a factor it suffices to show that T(I) commutes with T(x) for all $x \in M$. We may assume x is a projection p. By the Lemma, T(p) and T(I) - T(p) have zero product which implies that T(I) commutes with T(p).

It is interesting to note that in the case p=2 of Theorem 2, condition (ii) cannot be weakened. The trivial example T(x) = -x shows that we must assume T(I) = I. Furthermore, we can show the theorem to be false if (ii) is replaced by the weaker condition (ii') $T(M_h) \subset M_h$ and T(I) = I. To see this suppose that an L^2 -isometry of a finite factor M satisfying (ii') is always a *-automorphism or a *-anti-automorphism. Let N be a subfactor of M. Using [2, Théorème 8] each element x in M has a unique decomposition $x = x_1 + x_2$ where $x_1 \in N$ and x_2 is an element of M of trace 0. If α is a *-automorphism of N, the mapping $\tilde{\alpha}(x) = \alpha(x_1) + x_2$ is a linear L²-isometry of M satisfying (ii'), so according to our supposition is a *-automorphism of M. If for example we let N be the hyperfinite factor and we let M be the crossed product of N by a group G of order 2 of outer *-automorphisms of N (see [9]), then the above discussion implies that an arbitrary *-automorphism of N commutes with each *-automorphism of N of order 2, which is absurd.

4. Remarks. 1. The extension of Theorems 1 and 2 to the semifinite case is open. For p=2 this has been done by M. Broise [1] for conditions (i) and (ii) of Theorem 2.

- 2. The extension of Theorem 1 to the case $1 , <math>p \ne 2$, is open. If M is commutative and semifinite, this extension is known [6, Theorem 3.1].
- 3. The results of this paper should prove to be useful for attacking the extension problems of *-isomorphisms between subalgebras of von Neumann algebras and therefore for constructing outer *-automorphisms on factors of type II₁. We propose to investigate this in a subsequent paper.

REFERENCES

- 1. M. Broise, Sur les isomorphismes de certaines algèbres de von Neumann, Ann. Sci. École Norm. Sup. 83 (1966), 91-111.
- 2. J. Dixmier, Formes lineaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
- 3. ——, Les Algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
 - 4. ——, Les C*-algèbres et leurs representations, Gauthier-Villars, Paris, 1964.
- 5. R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338.
- 6. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.
- 7. B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416.
- 8. I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457.
- 9. N. Suzuki, Crossed products of rings of operators, Tohoku Math. J. 11 (1959), 113-124.

University of California, Irvine