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Let G. (€T be a set of groups. The direct product []{G.|a€T'}
is the set of all functions f on I" such that f(a) EG, for all «&T', with
multiplication of functions defined componentwise. The direct sum
> {G.|a€T'} is the subgroup of []{G. aET} consisting of all
functions f with finite support.

A collection & of groups is called a class of groups if EE®, and iso-
morphic images of B groups are & groups. We use the following nota-
tion of P. Hall [1]. If ® is a class of groups, S(®), Q(®), DS(®),
DP(®) denote respectively the classes of groups which are subgroups,
quotient groups, direct sums and direct products of & groups.

The following theorem was proved by Merzulakov in [2].

THEOREM 1. If ® is a class of groups satisfying

(@) $S(®) =@,

(b) 0®) =@,

(c) Gisafinite® group if and only if G is nilpotent, then DP(®) = ®.

In this paper, a similar theorem is obtained for generalized solvable
groups. Before stating these results, we need several definitions.

DEerFINITION 1. Let G be a group, xEG, g&G. Define [g, 0x] =g,
and inductively [g, nx]=[[g, (r—1)x], x] for each positive integer n.
x is called a left G Engel element if for each g&G there exists an inte-
ger n=n(g) such that [g, nx]=e.

The Hirsch-Plotkin radical of a group G is the maximum normal
locally nilpotent subgroup of G. We denote the Hirsch-Plotkin radical
of G by ¢:1(G).

DEFINITION 2. Let G be a group and ¢¢(G) =E. If « is not a limit
ordinal, define ¢o(G) by ¢o(G)/Pe-1(G) =$1(G/Pa-1(G)). If a is a limit
ordinal, define ¢«(G) by ¢.(G) =U {¢s|B<a}. If for some ordinal g,
¢.(G) =G, G is called an LN-radical group.

In the following, £ will denote the class of LN-radical groups. If
GE L, and o is the least ordinal for which ¢,(G) =G, ¢ is called the
radical class of G. It is well known that S(£)=¢&, Q(£)=¢, and
that every solvable group is in £ [3]. It is easily shown that if # is a
positive integer, there exist finite solvable groups of radical class »
[4, p. 220].

We need the following theorem of Plotkin [3].
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THEOREM 2. If GE &, then the set of left Engel elements of G is a sub-
group, and this subgroup coincides with the Hirsch-Plotkin radical of G.

In the remainder of this paper, J will denote the set of nonnegative
integers.

THEOREM 3. Let n&J and G,& £ have radical class n. Then G
=[1{G.|nET} & £.

Proor. Let Ri=]]{¢w(Gs)|nET} and R=U{Ri|kEJ}. Then
R <G and R#G. We show that ¢:(G/R) =E.

Suppose to the contrary that ¢1(G/R)#E and let yRE¢:(G/R)
with y& R. Then yR is a left G/R Engel element. Thus for each
xEG\R, there exists a positive integer #n=n(x) such that [x, ny] ER.
Hence for each x&G\R, there exist nonnegative integers n=mn(x)
and k=Fk(x) such that [x, ny] ER,.

We now construct an x &G for which the above assertions do not
hold. Since y&R, there exists 44&J such that y(4)&E¢i(Gy,). By
Theorem 2, y(7,) is not a left G;; Engel element. Hence there exists
%, EG;, such that [x;), sy(i1) |&¢o(Gi,) =E for all s&J.

Suppose nonnegative integers 7, <2< : - + <4, and elements x,;
€G;; (1=5j=r) have been found so that for 1=5j<r, [xi, sy(ij)j
&p;-1(Gy;) for all s&J. Since y&ER, there exists an integer 4,114,
such that y(4r41) &¢r4a(Gs,,,). Thus, by Theorem 2 y(2,41)¢,(G:,,,) is
not a left Gi,,,/9.(G:,,,) Engel element. Hence there exists «;,,,
€G;,,, such that [x;,,, sy(Gm1) ] € (Gi,,,) for all sET.

Let I= {41, 42 + + +, 4, - » + }. Define xEG as follows: x(y) =x, if
nET and x(n) =e otherwise. Let & J. Then [x, sy] € R, for all s€J.
This is contrary to the first paragraph of this proof.

THEOREM 4. Let ® be a class of groups such that

(@) &C&,

(b) every finite solvable group is contained in ®.
Then DP(®)#=®,.

Proor. The proof follows from Theorem 3 and the existence of
finite solvable groups of radical class # for each n& J.

The direct product []{G.|a€T'} is called a direct power of H if
each G, is isomorphic to H. If ® is a class of groups, dp(®) will denote
the class of groups which are direct powers of ® groups.

In the next theorem, § will denote the class of solvable groups.

THEOREM 5. If ® is a class of groups such that
(@) &Ce,
(b) DSE)C®,

Then dp(®) #®.
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PrOOF. Let G= ) {G.|nEJ} where G, is solvable of radical class
7n. Then G&® and has radical class w. Let H = H {Hk[ ke T, szG} .
H has a subgroup satisfying the hypothesis of Theorem 3. Hence
Hd £. Consequently, HE®.

Classes of groups satisfying the conditions of Theorems 4 and 5
include the classes SN*, ST*, subsolvable and polycyclic.

BIBLIOGRAPHY

1. P. Hall, On non-strictly simple groups, Proc. Cambridge Philos. Soc. 59 (1963),
531-553.

2. J. 1. Merzulakov, On the theory of generalized solvable and nilpotent groups,
Algebra i Logika Sem. 2 (1963), 29-36. (Russian)

3. B. I. Plotkin, Radical groups, Amer. Math. Soc. Transl. (2) 17 (1961), 9-28.

4. W. R. Scott, Group theory, Prentice Hall, Englewood Cliffs, N. J., 1965.

UNIVERSITY OF KANSAS

ALGEBRAIZATION OF ITERATED INTEGRATION
ALONG PATHS!

BY KUO-TSAI CHEN
Communicated by Saunders Mac Lane June 12, 1967

If Q is the vector space of C® 1-forms on a C® manifold M, then
iterated integrals along a piecewise smooth path a: [0, I]—M can be
inductively defined as below:

Forr=2and wy, ws, + - -, €EQ,

fa Wiy = fo l( f w -qu)w,(a(t), ()t

where at=a| [0, ¢]. (See [3].)

This note is based on the following algebraic properties of the iter-
ated integration:

(@) ( fawl - w,) (fa‘Wr+1 Ce e Wey,) = Zf aWs() * * * We(rs) SUM-
ming over all (,5)-shuffles, i.e. those permutationsa of {1, - - - ,7+s}
with e~ (1)< + -+ <o™Y(r), o7 +1)< - -+ <o~ (r+s).

(b) If p=a(0) and if f is any C* function on M, then

f,. fo = f (@)w + 1p) f .
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