ON DIRECT PRODUCTS OF GENERALIZED SOLVABLE GROUPS

BY RICHARD E. PHILLIPS

Communicated by W. Feit, May 26, 1967

Let G_{α} ($\alpha \in \Gamma$) be a set of groups. The direct product $\prod \{G_{\alpha} | \alpha \in \Gamma\}$ is the set of all functions f on Γ such that $f(\alpha) \in G_{\alpha}$ for all $\alpha \in \Gamma$, with multiplication of functions defined componentwise. The direct sum $\sum \{G_{\alpha} | \alpha \in \Gamma\}$ is the subgroup of $\prod \{G_{\alpha} | \alpha \in \Gamma\}$ consisting of all functions f with finite support.

A collection \mathfrak{B} of groups is called a class of groups if $E \in \mathfrak{B}$, and isomorphic images of \mathfrak{B} groups are \mathfrak{B} groups. We use the following notation of P. Hall [1]. If \mathfrak{B} is a class of groups, $S(\mathfrak{B})$, $Q(\mathfrak{B})$, $DS(\mathfrak{B})$, $DP(\mathfrak{B})$ denote respectively the classes of groups which are subgroups, quotient groups, direct sums and direct products of \mathfrak{B} groups.

The following theorem was proved by Merzulakov in [2].

THEOREM 1. If B is a class of groups satisfying

- (a) $S(\mathfrak{B}) = \mathfrak{B}$,
- (b) Q(B) = B,
- (c) G is a finite \mathfrak{B} group if and only if G is nilpotent, then $DP(\mathfrak{B}) \neq \mathfrak{B}$.

In this paper, a similar theorem is obtained for generalized solvable groups. Before stating these results, we need several definitions.

DEFINITION 1. Let G be a group, $x \in G$, $g \in G$. Define [g, 0x] = g, and inductively [g, nx] = [[g, (n-1)x], x] for each positive integer n. x is called a left G Engel element if for each $g \in G$ there exists an integer n = n(g) such that [g, nx] = e.

The Hirsch-Plotkin radical of a group G is the maximum normal locally nilpotent subgroup of G. We denote the Hirsch-Plotkin radical of G by $\phi_1(G)$.

DEFINITION 2. Let G be a group and $\phi_0(G) = E$. If α is not a limit ordinal, define $\phi_{\alpha}(G)$ by $\phi_{\alpha}(G)/\phi_{\alpha-1}(G) = \phi_1(G/\phi_{\alpha-1}(G))$. If α is a limit ordinal, define $\phi_{\alpha}(G)$ by $\phi_{\alpha}(G) = \bigcup \{\phi_{\beta} | \beta < \alpha\}$. If for some ordinal σ , $\phi_{\sigma}(G) = G$, G is called an LN-radical group.

In the following, \mathfrak{L} will denote the class of LN-radical groups. If $G \subset \mathfrak{L}$, and σ is the least ordinal for which $\phi_{\sigma}(G) = G$, σ is called the radical class of G. It is well known that $S(\mathfrak{L}) = \mathfrak{L}$, $Q(\mathfrak{L}) = \mathfrak{L}$, and that every solvable group is in \mathfrak{L} [3]. It is easily shown that if n is a positive integer, there exist finite solvable groups of radical class n [4, p. 220].

We need the following theorem of Plotkin [3].

THEOREM 2. If $G \in \mathfrak{L}$, then the set of left Engel elements of G is a subgroup, and this subgroup coincides with the Hirsch-Plotkin radical of G.

In the remainder of this paper, J will denote the set of nonnegative integers.

Theorem 3. Let $n \in J$ and $G_n \in \mathfrak{L}$ have radical class n. Then $G = \prod \{G_n | n \in J\} \notin \mathfrak{L}$.

PROOF. Let $R_k = \prod \{ \phi_k(G_n) | n \in J \}$ and $R = \bigcup \{ R_k | k \in J \}$. Then $R \triangleleft G$ and $R \neq G$. We show that $\phi_1(G/R) = E$.

Suppose to the contrary that $\phi_1(G/R) \neq E$ and let $yR \in \phi_1(G/R)$ with $y \in R$. Then yR is a left G/R Engel element. Thus for each $x \in G \setminus R$, there exists a positive integer n = n(x) such that $[x, ny] \in R$. Hence for each $x \in G \setminus R$, there exist nonnegative integers n = n(x) and k = k(x) such that $[x, ny] \in R_k$.

We now construct an $x \in G$ for which the above assertions do not hold. Since $y \notin R$, there exists $i_1 \in J$ such that $y(i_1) \notin \phi_1(G_{i_1})$. By Theorem 2, $y(i_1)$ is not a left G_{i_1} Engel element. Hence there exists $x_{i_1} \in G_{i_1}$ such that $[x_{i_1}, sy(i_1)] \notin \phi_0(G_{i_1}) = E$ for all $s \in J$.

Suppose nonnegative integers $i_1 < i_2 < \cdots < i_r$ and elements $x_{ij} \in G_{ij}$ ($1 \le j \le r$) have been found so that for $1 \le j \le r$, $[x_{ij}, sy(i_j)] \notin \phi_{j-1}(G_{ij})$ for all $s \in J$. Since $y \notin R$, there exists an integer $i_{r+1} > i_r$ such that $y(i_{r+1}) \notin \phi_{r+1}(G_{i_{r+1}})$. Thus, by Theorem 2 $y(i_{r+1})\phi_r(G_{i_{r+1}})$ is not a left $G_{i_{r+1}}/\phi_r(G_{i_{r+1}})$ Engel element. Hence there exists $x_{i_{r+1}} \in G_{i_{r+1}}$ such that $[x_{i_{r+1}}, sy(i_{r+1})] \notin \phi_r(G_{i_{r+1}})$ for all $s \in J$.

Let $I = \{i_1, i_2, \dots, i_r, \dots\}$. Define $x \in G$ as follows: $x(\eta) = x_{\eta}$ if $\eta \in I$ and $x(\eta) = e$ otherwise. Let $k \in J$. Then $[x, sy] \notin R_k$ for all $s \in J$. This is contrary to the first paragraph of this proof.

THEOREM 4. Let B be a class of groups such that

- (a) B⊂£,
- (b) every finite solvable group is contained in \mathfrak{B} . Then $DP(\mathfrak{B}) \neq \mathfrak{B}$.

PROOF. The proof follows from Theorem 3 and the existence of finite solvable groups of radical class n for each $n \in J$.

The direct product $\prod \{G_{\alpha} | \alpha \in \Gamma \}$ is called a direct power of H if each G_{α} is isomorphic to H. If \mathfrak{B} is a class of groups, $dp(\mathfrak{B})$ will denote the class of groups which are direct powers of \mathfrak{B} groups.

In the next theorem, S will denote the class of solvable groups.

THEOREM 5. If B is a class of groups such that

- (a) B⊂£,
- (b) $DS(s) \subset \mathfrak{B}$,

Then $dp(\mathfrak{B}) \neq \mathfrak{B}$.

PROOF. Let $G = \sum \{G_n | n \in J\}$ where G_n is solvable of radical class n. Then $G \in \mathfrak{G}$ and has radical class ω . Let $H = \prod \{H_k | k \in J, H_k \simeq G\}$. H has a subgroup satisfying the hypothesis of Theorem 3. Hence $H \in \mathfrak{L}$. Consequently, $H \in \mathfrak{G}$.

Classes of groups satisfying the conditions of Theorems 4 and 5 include the classes SN^* , SI^* , subsolvable and polycyclic.

BIBLIOGRAPHY

- 1. P. Hall, On non-strictly simple groups, Proc. Cambridge Philos. Soc. 59 (1963), 531-553.
- 2. J. I. Merzulakov, On the theory of generalized solvable and nilpotent groups, Algebra i Logika Sem. 2 (1963), 29-36. (Russian)
 - 3. B. I. Plotkin, Radical groups, Amer. Math. Soc. Transl. (2) 17 (1961), 9-28.
 - 4. W. R. Scott, Group theory, Prentice Hall, Englewood Cliffs, N. J., 1965.

University of Kansas

ALGEBRAIZATION OF ITERATED INTEGRATION ALONG PATHS¹

BY KUO-TSAI CHEN

Communicated by Saunders Mac Lane June 12, 1967

If Ω is the vector space of C^{∞} 1-forms on a C^{∞} manifold M, then iterated integrals along a piecewise smooth path α : $[0, l] \rightarrow M$ can be inductively defined as below:

For $r \ge 2$ and $w_1, w_2, \cdots, \in \Omega$,

$$\int_{\alpha} w_1 \cdot \cdot \cdot w_r = \int_0^1 \left(\int_{\alpha^t} w_1 \cdot \cdot \cdot w_{r-1} \right) w_r(\alpha(t), \dot{\alpha}(t)) dt$$

where $\alpha^t = \alpha \mid [0, t]$. (See [3].)

This note is based on the following algebraic properties of the iterated integration:

- (a) $(\int_{\alpha} w_1 \cdots w_r) (\int_{\alpha} w_{r+1} \cdots w_{r+s}) = \sum \int_{\alpha} w_{\sigma(1)} \cdots w_{\sigma(r+s)}$ summing over all (r,s)-shuffles, i.e. those permutations σ of $\{1, \cdots, r+s\}$ with $\sigma^{-1}(1) < \cdots < \sigma^{-1}(r), \ \sigma^{-1}(r+1) < \cdots < \sigma^{-1}(r+s).$
 - (b) If $p = \alpha(0)$ and if f is any C^{∞} function on M, then

$$\int_{\alpha} fw = \int_{\alpha} (df)w + f(p) \int_{\alpha} w.$$

¹ The work has been partially supported by the National Science Foundation under Grant NSF-GP-5423.