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The cohomology groups of a ring depend not only on the ring but 
on a choice of category of which the ring is a member. In [4] it was 
shown that under very weak conditions on the category one could 
define the third cohomology group S3(-4, M) of a ring A with coeffi­
cients in a bimodule M as certain equivalence classes of exact se­
quences 

(1) 0->M-±N-?»B->A-->0. 

The groups 8*04, M) and S2(^4, M) were the derivations of A into M 
and extensions of A by M, respectively. We show here that if a is an 
ideal of A and if M is an A /a module, then there is an exact sequence 

0 -> &(A/a, M)J-^&(A} M) ^> Honu(a, M)-î 

S*(ii/a, M) ^ 82(^, M) ^> 6 - J S 3 U/a, M) ^> 83(^, M), 

where G is an explicitly described submodule of Ext^(a, M). (Cf. 
Harrison [5, Theorem 2].) We then show that for the category of 
commutative associative algebras over a coefficient field &, the group 
8>S(A, M) as defined in [4] coincides with that defined by Harrison 
in [5]. (An example of Barr in a note to appear [ l] shows that in 
the category of commutative associative algebras, 83(^4, M) is not the 
first derived functor of the Baer group S2(^4, M) when the latter is 
considered as a functor of the module M.) More generally, two 
cohomology theories for a category of algebras or groups with suffi­
ciently many projectives coincides if (i) each possesses an exact se­
quence analogous to (2) with S 1^. , M) the derivations of A into M, 
and (ii) &n(A, M)=0 whenever A is projective. 

In order to be brief, we prove the exactness of (2) explicitly only 
for commutative associative algebras over fe, but the reader of [4] 
will observe that the considerations apply to any "category of inter­
est" in the sense of that paper. 

1 The author gratefully wishes to acknowledge the support of the Institute for 
Advanced Study and of the N.S.F. through Grant GP 3683 with the University of 
Pennsylvania. 
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1. The exactness of the long sequence. The category being com­
mutative algebras over k, an "A -module M" is a bimodule with 
am —ma for all a£^4 , mÇzM. The group C consists of the equivalence 
classes of A -module extensions 

or 
0—> j f —>N —>a —>0 

such that <r(n)n' ~n<r{n') for all nn'E.N. We make N into an algebra 
by setting nn' =<r(n)nf. The definition and the exactness of the long 
sequence (2) are classical until one gets to C. Recall that 8>3(Af M) 
is the group of equivalence classes of exact sequences (1) in which 
(1) B and N are commutative ^-algebras, N is a 5-module, and p is a 
jB-module morphism with p(n)n' ~nn' =np(n') for all n, w'EiV, and 
(2) B-+A is a ring morphism and M-+N is a 5-module morphism, 
where M is a J3-module by virtue of the morphism B-+A. 

We have 
i j 

0 -» a —» A —> ./4/a —> 0, 
M is an ^4-module by virtue of the morphism j , and aM=Afa = 0. If 

represents an element of &2(A, Af) then it is trivial to verify that the 
element i*E of Exti(a, M) represented by 0—»ikf—»7r~1(a)-->a--»0 lies 
in 6. If i*E splits by a map 5: a—>7r~1(a) C ^ , then set is an ideal of J3 
and Q-*M—*B/SCL-*A/CL-*Q represents an element of 8>2(A/a, M) 
whose image under j * is E. The exactness of (2) at S2(-4, M) follows. 

Let 

represent an element of C and set p — ia. Then 

0->M->N-?>A->A/a->0 

by definition represents A2FGS3(^4/a, M). If AiJ7=0, then by The­
orem 4 of [4] there is a commutative diagram 

0-»N->B->A/a->0 

11 i II 
0-*M-+N-+A-*A/a~->0 

and hence an extension E: 0—»j|f—>J5—>̂ 4-»0 of which one may 
verify that tjjg « F. The exactness of (2) a t 6 follows. The fact that 
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(2) is at least a zero sequence at Zz(A/a} M) is trivial leaving us only 
to prove that if 

E: 0 -> M -> N ï> B -* A/a -> 0 

has the property that j *E = 0 then E is of the form A2F. (3) If j*E = 0, 
then using Theorem 4 of [4] we have a commutative diagram 

0 0 

F: 0 —> AT—> C - > a - > 0 

4> 4* -v 

(3) 0 -> iV r - -> ;B-» ,4 -+0 

II I I 
E:0-+M->N->B-+ A/a -» 0 

1 t 
0 0 

It is easy to see that (dc)cf ~cc' = c(0cf) for all c> c'GC, and that if iV 
and C are considered as ideals in 2? then iVC=CiV = 0; therefore C 
becomes an -4-module by setting ac = ic where 5 is any element of B 
projecting onto a. Thus F represents an element of Q and it remains 
only to show that A2F is equivalent to E. Now let C+N denote the 
sum of C and N in B and observe that CC\N = M, whence defining 
C®N—>C+N by (c, n)—>c—n we have a short exact sequence 
0->M->C®N-*C+N->0. Since C and iV are both ideals in B it fol­
lows that C®N is a 5-module in an obvious way. Moreover, the 
kernel of the composite morphism B—>A/a in (3) is just C+N, so we 
have a composite sequence E: 0—>ikf—>C®N—>B-±A/a—>0 represent­
ing an element of S8(̂ 4, M). But we have the obvious morphisms 

A 2 F : 0 - > M - > C -* 4 - > 4 / a - > 0 

î II î Î II 
E :Q->M->C®N~>B~->A/a->0 

I II I I II 

Thus £ and A2F are equivalent, proving the exactness of the long 
sequence (2). 

We have not required that the coefficient ring be a field nor have 
we used any special property of the commutative theory. Observe, 
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however, that if, as we suppose, the category is that of commutative 
rings, M is an A /a module, and 

is an additively split sequence of ^-modules, with <r(n)n'~n<r(n'), 
all n, n'ÇEN, then choosing a splitting map s: a—>N represents N as 
the group direct sum a+M with a(x, m) = (ax, am+F(af x)) = (x} m)a% 

where a(EAf #£a , tnÇEM, and F is a biadditive map AXM—»M. 
Since <r(x, m)—x and ctilf = 0, we have a(x, m) • (x', mr) = (xx', F(x, x')) 
and the condition that <x(n)n'= ncr(n') then readily implies that 
F(x, x') = F(x', x). Setting F(x, a) = F(a, x), F becomes a symmetric 
map [A®M+M®A]—>M. From (ab)(x, m)=a[b(x) m)] we have 
aF(b, x)~F(ab, x) + F(a, bx)=Q. Since F has its values in M 
we set F(a, b)x = 0 even though F(a, b) is undefined, and have thus 
SF(a, by x) = 0, where 5 is the Hochschild coboundary [6]. It is trivial 
to verify that 6F(a, b} c) = 0 whenever a, b or c is in a, that changing 
the splitting replaces F by F+ôg where g is a linear map a—>M, and 
that G is naturally isomorphic to the quotient, 

(symmetric cocycles)/(coboundaries). 

2. Harrison's sequence. All algebras and modules are now assumed 
to be vector spaces over a field k. For every i, set A(i) = ®iA and set 
F(w)= ^2iZo A(^i)®a®A(in-i-1)CA^\ We have the exact sequence 

0 -> yin) ^ A oo Z£ (^/a) (•> _> o. 

Let Cn(^4, M) denote the submodule of HomA(^4(w), ikT) consisting of 
all elements vanishing on "shuffles" (cf. [3]), define Cn(A/a, M) 
similarly, and let Cn(V, M) denote the set of those elements of 
Hom&(F(n), M) which vanish on shuffles in which one of the elements 
shuffled is in a. Since aM = Afa = 0, if F£Cn(V, M) then 8F is a well-
defined element of Cn+1(V, M). We have, thus, Ôn

A: Cn(A, M) 
-*Cn+l(A, M), similarly with A /a in place of A, and öy: Cn(V, M) 
-+Cn+1(V, M). Harrison sets &n(A, M) = ker bnJ\m 8Y\ and similarly 
for A /a. Note that im S° = 0 and that ker dv^HomA(a, M). To 
be consistent with Harrison's notation we set ker ôy/im ôyl 

= en~l(A, a,M)==ew~'1. Define A: en~l->&n+1(A/a, M) so: if 
JFGker &v let F be any element of en(A, M) such that iÎF^F. Then 
8F vanishes on F(w+1) and so may be viewed as an element of ker SJ}/ 
whose cohomology class A F in fact depends only on the class of F. 
It is not difficult to verify that we then have a long exact sequence 
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0 -> SK^/a, M) ^> &(A, M)J-^ Honu(a, M) -> 82(^/a, M) 

% • • S"(i4/<*, Af) ^ SnU> J f ) " ^ e » - 1 ^ , a, Jf) 

-> S^+K^/a, M) -> • • • . 

Now the "symmetric cocycles" of §1 are simply the elements of 
ker h\ and the "coboundaries" are the elements of im^. Therefore, 
the 6 of the long sequence (2) is identical with G1 here. Moreover, as 
observed by Harrison, &2(A, M) is the Baer group of equivalence 
classes of extensions 0-~»M—>B—>A—»0 (where B is a commutative 
algebra), and similarly for A /a. Thus, the terms in the present long 
sequence coincide with those in the sequence (2) up to and including 
G1. Now if A is a polynomial algebra, possibly in infinitely many 
variables, then Harrison's 83(^4, M) vanishes by Theorem 11 of [5], 
while the sequence (1) represents zero because there is a splitting 
map A—>B. Since, likewise, 82(^4, M)=0, it follows that for such an 
A the two definitions of &s(A/a, M) both coincide with G1. Since 
every commutative algebra is a quotient of a polynomial algebra, 
we have proven finally the 

THEOREM. For the category of commutative algebras over afield k, the 
third cohomology module 8>*(A, M) of an algebra A with coefficients in a 
module M as defined in [4] coincides with the module 83(4, M) of 
Harrison [5]. 

The long exact sequence analogous to (4) for associative algebras 
and groups has been studied by Barr and Rinehart [2], 
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