DIFFERENTIABLE DYNAMICAL SYSTEMS!

BY S. SMALE
PART I. DIFFEOMORPHISMS

I.1. Introduction to conjugacy problems for diffeomorphisms. This
is a survey article on the area of global analysis defined by differenti-
able dynamical systems or equivalently the action (differentiable)
of a Lie group G on a manifold M. An action is a homomorphism
G—Diff (M) such that the induced map GX M— M is differentiable.
Here Diff (M) is the group of all diffeomorphisms of M and a diffeo-
morphism is a differentiable map with a differentiable inverse. Every-
thing will be discussed here from the C* or C" point of view. All
manifolds maps, etc. will be differentiable (C7, 1 <7< «) unless
stated otherwise,

In the beginning we will be restricted to the discrete case, G=2Z.
Here Z denotes the integers, Z* the positive integers. By taking a
generator f&Diff (M), this amounts to studying diffeomorphisms on
a manifold from the point of view of orbit structure. The orbit of
x&E M, relative to f, is the subset { fm(x) I mcZ } of M or else the map
Z— M which sends m into f~(x). The finite orbits are called periodic
orbits and their points, periodic points. Thus x & M is a periodic point
if fm(x) =x for some mE&Z+. Here m is called a period of x and if
m=1, x is a fixed point. Our problem is to study the global orbit
structure, i.e,, all of the orbits on M.

The main motivation for this problem comes from ordinary dif-
ferential equations, which essentially corresponds to G=R, R the
reals acting on M. There are two reasons for this leading to the dif-
feomorphism problem. One is that certain differential equations have
cross-sections (see, e.g., [114]) and in this case the qualitative study
of the differential equation reduces to the study of an associated
diffeomorphism of the cross-section. This is the reason why Poincaré
[90] and Birkhoff {19] studied diffeomorphisms of surfaces,

I believe there is a second and more important reason for studying
the diffeomorphism problem (besides its great natural beauty). That
is, the same phenomena and problems of the qualitative theory of
ordinary differential equations are present in their simplest form in
the diffeomorphism problem. Having first found theorems in the dif-

1 The preparation of this paper was supported by the National Science Founda-
tion under grant GN-530 to the American Mathematical Society and partially
supported by NSF grant GP-5798.
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feomorphism case, it is usually a secondary task to translate the
results back into the differential equations framework.

Assuming M compact, we put on Diff (M) the topology of uniform
Cr convergence. We will usually keep M compact because for non-
compact M, there are different behaviours at infinity that one could
consider. See, for example, [86]. These lead to different problems
and we don't wish to get into such questions here.

One of the first things that one observes is the need to exclude
degenerate elements of Diff(M). For example, given any nonempty
closed set FC M, there is fEDiff (M) such that the fixed point set
Fix(f) = F. For a number of reasons, if F is not discrete we would like
to exclude such f. The set of fEDiIff (M) such that Fix(f) is discrete
(or finite, since we assume M compact) contains an open dense set
of Diff(M). This leads to the notion of generic properties of diffeo-
morphisms. A Baire set of a complete metrizable space is the inter-
section of a countable number of open dense sets. Then a generic
property is a property that is true for diffeomorphisms belonging to
some Baire set of Diff (M). We will never speak of generic f& Diff (M)
(this is usually taken to mean that f has a lot of generic properties!).
Thus “Fix(f) is finite” is a generic property and a little more since
open dense is stronger than Baire (see §1.6 for more details and
references).

It is important in proceeding to consider formal equivalence rela-
tions on Diff (M) which will preserve the orbit structure in some sense.
Furthermore associated to each equivalence relation there is a notion
of stability. More precisely if the equivalence relation on Diff (M) is
called E, fEDiff (M) is called E-stable if there is a neighborhood
N(f) of f in Diff (M) such that if f/EN(f) (or f' approximates f suffi-
ciently), then f and f’ are in the same E equivalence class.

It would give a reasonable picture (see [111], [112]) to have a
dense open set UCDiff (M) such that our equivalence classes could
be distinguished by numerical and algebraic invariants. This is, in
fact, our goal. If this is to be the case, the desired equivalence E on
Diff (M) should have the property that the E-stable diffeomorphisms
are dense in Diff (M). With this background we look at some particu-
lar equivalence relations.

The notion of conjugacy first comes to mind. Say f, f/ €Diff (M)
are differentiably (or topologically) conjugate if there is a diffeo-
morphism (or homeomorphism) %#: M—M such that Af=fh. Dif-
ferentiable conjugacy is too fine in view of the above considerations.
This is due to the fact that the eigenvalues of the derivative at a fixed
point are differentiable conjugacy invariants. The notion of stability
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associated to topological conjugacy is called structural stability, and
for some time it was thought that structurally stable diffeomorphisms
might be dense in Diff(3£). This turned out to be false [116]. Thus by
our earlier consideration we should relax our relation on Diff (M) of
topological conjugacy. Before doing this we introduce some basic
ideas about G. D. Birkhoff’s nonwandering points [15].

If fFEDIff(M), xEM is called a wandering point when there is a
neighborhood U of x such that Um0 f*(U)NU = &. The wandering
points clearly form an invariant open subset of M. A point will be
called nonwandering if it is not a wandering point. These nonwander-
ing points are those with the mildest possible form of recurrence.
They form a closed invariant set which we will always refer to as
Q=Q(f).

We propose now the equivalence “topological conjugacy on Q.”
That is f, f&Diff (M) are topologically conjugate on Q if there is a
homeomorphism %: Q(f)—Q(f’) such that hf=f"h. The corresponding
stability will be called simply Q-stability. So f& Diff (M) will be called
Q-stable if sufficiently good approximations f’ are topologically con-
jugate on Q.

In general one can speak of topological conjugacy for homeo-
morphisms and even two homeomorphisms of different topological
spaces, f: X—X, f’: X’—=X'. Then the conjugacy k& is a homeo-
morphism k: X—X'.

We end §1.1 by giving some notations and conventions we follow.

Anytime the topology on Diff (M) is involved M will be assumed
compact.

Simply connected X means II;(X) and II((X) are trivial. We sup-
pose that our manifolds are always connected.

Dim M means the dimension of M.

The tangent bundle of a manifold will be denoted by T'(M), the
tangent space at x&EM by T.(M). The derivative of f: M—M will
be denoted by Df and considered as a bundle map Df: T(M)—T(M).
At a point x E M, it becomes Df(x): To(M)—Tyw (M). An immersion
is a differentiable map such that the derivative at each point is injec-
tive.

A closed invariant set A of f&EDiff (M) will be called indecompos-
able if A cannot be written A =A;\UA,, A1, A2 nonempty disjoint closed
invariant subsets.

Finally if N is an eigenvalue of a linear transformation #: V—7V,
we will define its eigenspace Ej\= {xE Vl (w—AI)™(x) =0, some
m€Z+}. Then N will be counted with multiplicity dim E.

Two earlier surveys on this subject are [85] and [112].
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Part I is the heart of the paper, including a number of new ideas,
and is devoted to problems spoken of in this section. Part II briefly
extends the results to the ordinary differential equation case (G=R)
and Part III discusses other aspects of the differential equation prob-
lem. Part IV is devoted to possibilities for more general Lie groups G.

I would like to acknowledge here many very helpful discussions
with other mathematicians. This includes especially D. Anosov,
A. Borel, A. Haefliger, M. Hirsch, N. Kopell, I. Kupka, J. Moser
R. Narasimhan, J. Palis, M. Peixoto, C. Pugh, M. Shub and R. Thomj

1.2, The simplest examples. This section is devoted to giving a
description of a class of Q-stable diffeomorphisms which are the sim-
plest as far as the orbit structure goes. To develop or even define these
diffeomorphisms, we will need the basic idea of a stable manifold.

A linear automorphism # of a (say real) finite dimensional vector
space V, u: V—V will be called hyperbolic if its eigenvalues \; satisfy
l)\.-] #1 all 2. We emphasize that complex eigenvalues are permitted.
The automorphism % will be called contracting if |\;| <1 for all 4,
expanding if |)\,-l >1 for all z, and of saddle type otherwise. Thus the
inverse of an expanding automorphism is a contracting autonior-
phism and vice versa.

Observe that for hyperbolic #: V—V we have a canonical, invari-
ant (under ) splitting of V, V= V*- V* (direct sum) where V*is the
eigenspace of # corresponding to eigenvalues less than 1 in absolute
value and V* the eigenspace of the remaining eigenvalues. Thus
restricted to V* is contracting and # restricted to V* is expanding.
This gives rise to the following familiar picture for such «.

Ve
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Note that the hyperbolic elements of the general linear group GL(V)
are open and dense.

Now suppose f: M—M is a diffeomorphism with a fixed point
pPEM (a local diffeomorphism f: U—M, U an open subset of M,
pEU, f(p)=p would be sufficient for some of the following discus-
sion). The derivative of f at p, Df(p), may be considered to be a linear
automorphism of the tangent space of M at p, i.e., Df(p): T,(M)
—T(M). We will say that p is a kyperbolic fixed point of f, or simply
a hyperbolic fixed point, if Df(p) is hyperbolic in the sense of the
previous paragraphs.

We will call a periodic point p of period m&EZ* of f: M—M
hyperbolic if it is a hyperbolic fixed point of f~. Similarly, p is a
contracting or expanding periodic point if Df»(p) is a contracting
(or expanding) linear automorphism.

A (global) contraction of a differentiable manifold V is a diffeo-
morphism g: V—V which is topologically conjugate to a linear con-
traction (i.e., a linear contracting automorphism) u: V'—7V’. Of
course a contraction will have a unique fixed point.

For hyperbolic fixed points we have stable manifolds defined accord-
ing to the following theorem.

(2.1) Stable Manifold Theorem. Suppose p & M is a hyperbolic fixed
point of a diffeomorphism f: M—M with T,(M)=V*+ V* the cor-
responding decomposition under Df(p). Then there exists a contrac-
tion g: W*(p)— W*(p) with fixed point py and an injective equivariant
immersion J: W*(p)— M such that J(po) =p and DJ(po): Tp(W*(p))
—T,(M) is an isomorphism onto V*C T,(M). Furthermore the image
J(W+(p)) may be characterized as the set of x& M with the property
frx)—pasm— oo,

Equivariance here means simply that Jg=fJ. Note that the deriva-
tive condition implies that the dimensions of V* and W*(p) are the
same.

The image of J is invariant under f, and frequently we will identify
points under J so that W*(p) C M. In general, J will not be a homeo-
morphism onto its image (see the toral example of §1.3), so that the
original W2(p) and W*(p) is a subset of M have different topologies
and this is the only way they differ. Both are called the stable mani-
fold of f at p. When it is important to specify the topology, we will
say inirinsic for the original topology and the manifold topology for
the other topology on We(p).

For analytic diffeomorphisms of two dimensional manifolds, this
theorem was known to Poincaré [90] and used by Birkhoff [16].
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The proof of (2.1) starts by showing the existence of a “local stable
manifold,” Wee(p). This is due to Perron [88]. He uses iteration
methods in a function space to solve a functional equation for J in a
neighborhood of p. Further references to versions of this theorem are
[2], [24], [39], [120] (most often these papers concern themselves
with the differential equations analogue, so one has to make a transla-
tion of the results). The global theorem, (2.1), follows easily from the
local theorem by so to speak “topological continuation.” One takes
for We(p) the subset Unez+ f™Weioo(p) of M. See [114] for more
details.

For a hyperbolic fixed point p of a diffeomorphism f: M— M, the
unstable manifold W+(p) is defined as the stable manifold of f~! at p.
Thus W+(p) passes through p and is tangent to V* in the notation
of (2.1).

For a periodic point ¢ of f&EDiff (M), f~(q) =q, m&EZ*, one defines
the stable and unstable manifolds, W*(p), W*(q) as the stable and
unstable manifolds for ¢ as a fixed point of f=.

Although each W*(p) is a 1-1 immersion, there is no reason why
We(p) and W+(q) cannot intersect each other. In fact as the toral
example of §1.3 shows, it may happen that W?(p) intersects Wu(p)
(this is called a homoclinic point; see §1.5).

We now are in a position to describe the examples, or the class of
examples, we mentioned earlier. As a prototype it is worthwhile to
keep in mind the diffeomorphism gq: S2—.S? of the 2-sphere which can
be described complex analytically on the Riemann sphere by z—2z.
The two fixed points are 0 which is expanding and «, contracting.
Then W*(0)=.S2— o, W*(0)=0, W*(w)=10w, W*(»0)=52—0. It is
easily checked that g, is structurally stable. Of course one may con-
struct a similar example on .S* with two fixed points.

More generally we will consider fEDiff (M), M compact, which
satisfies the following three conditions:

(2.2) (1) Q, the nonwandering set, is finite.

(2) The periodic points of f are hyperbolic.

(3) (Transversal intersection condition) For each p, ¢&EQ, W*(p)
and W+(q) have transversal intersection.

It follows from (1) that Q consists of periodic points and (2) that
We(p), W=(q) are defined for p, ¢EQ. The last condition means that
whenever xEW*(p)\W=(q), then T (W*(p)) and T.(W*(q)) span
T.(M).

It is trivial to check that the above go: S?—S?2 satisfies (1)-(3).

Furthermore, consider for the moment, diffeomorphisms of the
circle S? satisfying (2.2). In this case (2.2)-(3) is vacuously satisfied,
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and it is easily checked directly that these diffeomorphisms are open.
By perturbing an arbitrary f&EDiff (S!) so that its rotation number
[24] becomes rational and a further approximation to obtain (2.2)-(1)
we obtain the fact that these diffeomorphisms are open and dense in
Diff (S!) (Peixoto’s theorem [84]). As one goes around the circle, the
expanding and contracting periodic points alternate. The structural
stability in the case is easy to check [84].
If ACB, clos A denotes the closure of 4 in B.

(2.3) THEOREM [109]. Suppose f: M— M satisfies (2.2). Then (a) for
each pEQ, We(p) is imbedded in M and M=U,cq We(p) (disjoint
union of course).

(b) clos We(p) is the union of We(q), for q in some subset of Q.
If we write y<v' for periodic orbits v, v whenever Uye, W*(p)
Cclos Ugeyr We(q), then < is a partial ordering. If y<v' and pE&v,
qEY', then dim We(p) <dim W=(q).

(c) One has the following Morse inequalities:

Mo > B,,
M["'MO%BI—BO,

dim M dim M

_Z; (—1)iM; = Zoj (—1)B..

Here B; is the sth betti number of M and M; is the number of
periodic points p such that dim We(p) =j.

The essence of the proof of (2.3) is in a more general context in §1.8.

Using (2.3) (b), one may “represent” a diffeomorphism satisfying
(2.2) by a diagram where the vertices of the diagram correspond to
periodic orbits and oriented segments are placed between orbits ¥
and 4’ when ¥ <%’ but there is no other 4"’ such that y=v" <v'.

A labeled diagram is a diagram with the following additional data
attached to each vertex 7. The additional data is the germ of the topo-
logical conjugacy class of f» at x &y where m is the least period of v.
This germ is described precisely by the dimensions of We*(x), W=(x)
and whether f: We(x)—W=(x), f: W*(x)—W*(x) are orientation pre-
serving or reversing (this is a consequence of the theorem of Hartman
[39] and Grobman (see [74] which says that locally a diffeomor-
phism at a hyperbolic fixed point is topologically equivalent to its
derivative at that point).

(2.4) ProBLEM. (a) Exactly what (abstract) labeled diagrams occur
as diagrams of diffeomorphisms satisfying (2.2)?
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(b) Given compact M exactly what (abstract) labeled diagrams
occur as the labeled diagrams of diffeomorphisms of M satisfying
(2.2)?

Note that (2.3) (c) may be viewed as a restriction on the kind of
diagrams that can occur.

Figure 2 below gives the phase portrait or orbit structure of an
example of a diffeomorphism of the 2-sphere satisfying (2.2).

Y

{

FIGURE 2

Here the main disk is to be contracting into itself with one expand-
ing fixed point p outside. Inside the disk are five fixed points a, ¢, ¢ all
contracting and b, d of saddle type. The diagram for this diffeo-
morphism is given by

b2

a c €

F1GUre 3
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Among other interesting results on this subject, Jacob Palis [82]
shows that diffeomorphisms satisfying (2.2) form an open set in
Diff (M). He also shows that the diagram of the perturbation of f is
naturally “isomorphic” to the diagram of f.

Even though the above facts give something of a “phase portrait”
(in the terminology of [57]), a number of problems on this subject
still remain. For example

(2.5) ProBLEM [109], [111]. Are these diffeomorphisms (of 2.2)
structurally stable? J. Palis has given an affirmative answer in dimen-
sion 2.

(2.6) What homotopy classes of continuous maps (homotopy
equivalences) admit diffeomorphisms of (2.2) type? A necessary con-
dition which follows from the Lefschetz trace formula is that |A(f)|
< C, where A is the Lefschetz number and C is a constant indepen-
dent of m.

The gradient-like diffeomorphisms are a special class of diffeo-
morphisms satisfying (2.2), the most transparent and easily under-
stood. More precisely a gradient-like diffeomorphism is one which
satisfies (2.2) and has the additional property that if W?(p) < W=(q),
then dim W2(p) is actually less than dim W*(g). For example the dif-
feomorphism of diagram 2 is gradient-like.

More generally every gradient flow with mild transversality and
nondegeneracy conditions (see [110]) generates a gradient-like dif-
feomorphism. This construction guarantees the existence of gradient-
like diffeomorphisms (satisfying (2.2)) on every compact manifold.
In this way the above Morse inequalities (2.3) (c¢) include the usual
ones. Even for these diffeomorphisms, structural stability is not
yet proved.

For a 2-dimensional diffeomorphism satisfying (2.2) a hetero-
clinic point is a point x & W=(p) M W=*(q) where dim W2(g) =dim W=(p)
=1, so that at x, T-(W=(p)) and T.(W*(g)) intersect in just one point
in To(M). Clearly a diffeomorphism possessing a heteroclinic point is
not gradient-like. The orbit of a heteroclinic point consists of other
heteroclinic points.

The interested reader will be able to check that the existence of the
heteroclinic point x above forces W*(g) to oscillate strongly as it gets
close to p and W*(p). The boundary of W*(¢) contains W:(p). The
picture looks something like Figure 4.

To obtain a global example one may modify the diffeomorphism
of the 2-sphere of Figure 2. The result will be something like Figure 5.
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Ficure 4

FIGURE 5

Its diagram is given in Figure 6.

We discuss relaxing or dropping some of the conditions (1), (2), (3)
of (2.2). The rest of Part I is concerned with weakening (1), so we
consider now (2) and (3). It seems to us that dropping (2) or even
modifying (2) significantly would take one far from the picture
described by (2.3). What happens if (3) is relaxed?

Consider the following substitute for (3).
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FIGURE 6

(3") If W*(p) and Wx(q) intersect at all, then there is a point of
transversal intersection of W+(p) and Wx(g).

With the weaker (3’) replacing (3) one still is able to prove (2.3).
Moreover with either (3) or (3’), the relation < and the diagram are
invariant under perturbation. However, with a weakened version
of (2.2) there is no hope of proving structural stability as the simplest
counter-examples show. In fact for structurally stable f&Diff (M),
(3) is satisfied.

The bulk of this section is taken from [109] with some updating, a
few examples and other points added. On the other hand, many of the
ideas go back quite a number of years. Certainly the local theory as
mentioned in the text is of this character. Also Poincaré [89], Birk-
hoff [16], and M. Morse [68] all had some parts of this global picture.
Since this earlier work, Andronov and Pontrjagin [6], Elsgolts [30],
Peixoto [83], Reeb [94], and Thom [124] among others had made
contributions toward the picture given in this section.

Besides giving simple examples of Q-stable diffeomorphisms, the
material in this section serves as an introduction to the more general
theory of §1.6, where a number of these concepts have natural exten-
sions.

I.3. Anosov diffeomorphisms. The examples of this section (at
least roughly speaking) are at the opposite extreme from those of the
preceding section in that the whole manifold consists of nonwandering
points and the periodic points are dense. This is in contrast to  being
finite as in §I1.2. We give first the simplest examples of Anosov dif-
feomorphisms, the toral diffeomorphisms.

Consider f, a 2 X2 matrix with integer entries and determinant +1,
i.e., fo&€GL(2, Z). Then f; can be thought of as a linear transforma-
tion of the plane R? which preserves the lattice L of points with
integer coordinates. There is an induced diffeomorphism f of the quo-
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tient R?/L = T?, 2-dimensional torus, onto itself. This diffeomorphism
f: T?*—T? has a fixed point p corresponding to the origin of R2.
Now suppose f, is hyperbolic, for example

G o)

Then p will be a hyperbolic fixed point of f and the stable and un-
stable manifolds W*(p) and W=(p) will be the image of the eigen-
spaces of f, under the projection II: R2—T? (since f, is hyperbolic,
the eigenvalues N, u are real and satisfy |N\|>1>|u|>0 with
1-dimensional eigenspaces). Since W*(p) is a 1-1 immersion, it winds
densely around the torus and similarly with W=(p).

The intersection points, in We(p)N\W+(p) (called homoclinic
points, see §1.5), are clearly dense in 7?2, and it can also be shown
that the periodic points of f are dense in 7% This follows from an
algebraic argument or one can use the generalized Birkhoff theorem
(see 1.(5.6)).

For any periodic point ¢& 712 of period m, the derivative of f» at g
can be thought of as fi': R2—R? after identifying T,(7%) and R? by
translation. The stable manifold W+(g) will then just be the translate
of W*(p). From the Lefschetz Trace Formula (see §1.4), the number
of periodic points N, of period 7 is 1 — \"+-u™) +degree f. Then any
g in the same homotopy class as f must have an infinite number of
periodic points and therefore cannot satisfy (2.2). It turns out that f
is structurally stable so that any perturbation of f/ will also have
periodic points dense in 72. Everything said about f, extends to
hyperbolic fo&GL(n, Z), defining what we will call toral diffeo-
morphisms.

The definitive version of the structural stability of f is contained in
the work of Anosov [7], [8] which we will describe now.,

We recall that a Riemannian vector space bundle E over a space X
is a vector space bundle such that each fiber E, is equipped with an
inner product (, ), in a continuous manner. This allows one to
speak of the norm ||v]| of a vector v EE,. A bundle map between vector
space bundles is a fiber preserving ¢: E—E of a Riemannian vector
space bundle into itself and will be called contracting if there exists
C>0, 0<\<1 such that for all vy&EE, m&Z+

ll¢=@| < x=o].

It will be called expanding if there exists d>0, u>1 such that for all
vEE, m&Zt

llg=@l > du]ol].
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Above, we really are just using the norm in each fiber, not the
inner product.

(3.1) ProrosITION. If X is compact, then the property of being con-
tracting or expanding for ¢: E—E, E a Riemannian vector space bundle
over X 1is independent of the Riemannian metric.

Proor. Two norms || ||, || ||’ on fibers of E are related locally, and
hence globally by a| ||<]|| ||'<8|| || for some a, 5>0. Thus if
l6m@)| exvllol], then [[g=@)]" < c®/am]".

(3.2) ProrosiTION. The tnverse of a coniracting bundle automor-
phism is an expanding bundle automorphism and vice-versa.

Proor. Suppose ”05"”(‘0)”56)\'””'11“. Then writing ¢*(@)=1w,
o= @w)|| 2 (1/6) /M) ™[]

Actually, J. Mather has shown me how to renorm the bundle so
as to make ¢ =1 in the defining condition for contracting bundle auto-
morphisms,

Since on every vector space bundle there exist Riemannian metrics,
by (3.1) we can dispense with the Riemannian structure when speak-
ing of contracting bundle maps of bundles over compact spaces.

If f: M—M is a diffeomorphism, then the derivative Df: T(M)
—T(M) is a bundle automorphism of the tangent bundle of M.

Suppose now that M is Riemannian so that 7 (M) is a Riemannian
vector space bundle over M. We will say that f: M— M is an Anosov
diffeomorphism and that M has a hyperbolic structure for f if the fol-
lowing condition is satisfied: there is a splitting of the tangent bundle
T(M) into a continuous (not necessarily C7) Whitney sum T(M)
=FE*+4E*, invariant under Df: T(M)—T (M) so that Df: E*+E* is
contracting and Df; E*—E* is expanding.

The Riemannian structure of T'(M) restricts to give a Riemannian
structure on E* and E* so that this condition makes sense; further-
more, in case M is compact, by our previous comment, the Rieman-
nian structure is unnecessary.

(3.3) TuroreEM (ANosov) ([7], [8]). An Anosov diffeomorphism f
of a compact manifold M is structurally stable. Furthermore if there is a
Lebesgue invariant measure for f on M, then the periodic points are dense

and f is ergodic. Finally the Anosov diffeomorphisms are an open set in
Diff (M).

For the proof of the first statement of (3.3) see the exposition of
J. Moser’s proof by J. Mather in the appendix. For the last sentence,
see §I1.8.
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It is apparent that the toral diffeomorphisms are Anosov diffeo-
morphisms; the splitting by f at p translates to each point of 7" to
give the desired global splitting.

From an invariant measure for a diffeomorphism f of a compact
manifold M, one can see easily that every point is nonwandering, i.e.,
Q= M. It is from this fact that Anosov concludes the density of the
periodic points of f.

(3.4) ProBLEM. Is it true that for every Anosov diffeomorphism
of a compact manifold M, Q= M, or equivalently, the periodic points
are dense in M? A second question is: does every Anosov diffeo-
morphism have a fixed point?

Motivation for this work of Anosov comes not only from the toral
diffeomorphisms, but more importantly from geodesic flows on mani-
folds with negative curvature, where Anosov’s ergodicity solves an
old problem. This is the 1-parameter analogue of (3.3) and will be
discussed later in our survey.

For (3.3), the basic idea of Anosov’s proof is to construct through
each point p of M, a generalized stable manifold W*(p). This will be
a 1-1 immersed cell with the property that for each x& W*(p), the
tangent space T,(W*(p)) coincides with E;CT.(M). Furthermore
F(We(p)) =W+(f(p)), and x, y are in the same W*(p) if and only if
d(fmx, fry)—0 as m— o,

Although each We¢(p) is smooth, W*(p) only depends continuously
on p (recall that the splitting of T'(M) was only required to be con-
tinuous). One may think of the W*(p) giving a continuous foliation
of M. The existence and basic properties of W*(p) are based on old
work by Perron [88].

Theorem (3.3) states that the Anosov diffeomorphisms are an
open set in Diff (M). On the other hand Anosov has examples to show
that this would be false if one imposed a smooth splitting of T'(M)
rather than a continuous one in the definitions.

The following is a basic and beautiful unsolved problem.

(3.5) ProBLEM. Find all examples of Anosov diffeomorphisms of
compact manifolds (up to topological conjugacy of course) such that
M=Q. What compact M admit Anosov diffeomorphisms? Must M
be covered by Euclidean space?

There do exist nontoral Anosov diffeomorphisms. We will show
this now and in fact give the most general known way of constructing
Anosov diffeomorphisms.

Suppose that G is a connected simply connected Lie group with
Lie algebra & and a uniform discrete subgroup I' (uniform means
that the coset space G/T' is compact). Suppose also that fo: G—G is a
continuous automorphism such that fo(T') =T and the derivative at
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the identity f7 : Te(G)—T(G) is hyperbolic (throughout this discus-
sion it will be helpful to keep the toral case, with G=R#®, in mind).
If T,(G) is identified with @ then f§ becomes the Lie algebra auto-
morphism induced from fo. From this data we will construct an Ano-
sov diffeomorphism f: G/I'—G/T'. At this writing, this is the most
general known construction of an Anosov diffeomorphism.

Since the linear automorphism f¢ : —@ is hyperbolic, we get the
usual invariant splitting @ = @*+ . Furthermore, (see [114]) there
exists constants ¢, ¢’ such that 0<c<1<¢’ and an inner product on
® so that

“fol (11)” < c“'u” ally € @,
Ifs @)l > lle| all w € ®~.

Next by right translations, identifying ® with T.(G), the splitting
and inner product are imposed on the tangent space of every point
of G. For this Riemannian metric on G, it is easily checked that
fo: G—G is given a hyperbolic structure or that fy: G—G is an Anosov
diffeomorphism.

Furthermore, this splitting of 7°(G) and the Riemannian metric
are both invariant under the action of G on G given by right transla-
tion. In particular they are right invariant under I" and so f, induces
an Anosov diffeomorphism f on the compact coset space G/T.

For the existence of the f; in the previous construction, the next
proposition shows that G must be nilpotent.

(3.6) PROPOSITION. Suppose that ¢: &—® is a Lie algebra auto-
morphism which is hyperbolic as a linear map. Then & must be nil-
potent.

For a proof, A. Borel has given me the following reference: let &
be a finite dimensional Lie algebra over a field having an auto-
morphism no eigenvalue of which is a root of unity; then ® is nil-
potent. Exercise in Bourbaki with hints: Algebras de Lie, Ex. 21b,
p. 124.

Now that we know that this construction forces G to be nilpotent,
and that I' is a uniform discrete subgroup, the results of Malcev [61],
summarized in [12a], become important.

(3.7) TurorREM (MALCEV). (a) A necessary and sufficient condition
for a discrete group T' to occur as a uniform subgroup of a simply con-
nected nilpotent Lie group is that T' be a finitely generated milpotent
group containing no elements of finite order.

(b) A necessary and sufficient condition on a nilpotent simply con-
nected Lie group G that there exist a uniform discrete subgroup T is that
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the Lie algebra of G has rational constants of structure in some basis.

(c) If T; is a uniform discrete subgroup of a simply connected nil-
potent group Gy, 1=1, 2, then any isomorphism I''—T's can be uniquely
extended to an isomorphism G1—Go.

The coset space G/T, G, T as above is called a nilmanifold.

While (3.6) and (3.7) give some general perspective on our class of
homogeneous space Anosov diffeomorphisms, this situation cannot
be said to be completely understood. There certainly do exist, how-
ever, many nontoral examples of Anosov diffeomorphisms on nil-
manifolds as special cases of the above construction. We give two of
them now with dim G=6.

Let Gi, G; be copies of the three dimensional simply connected,
nonabelian nilpotent Lie group. We take a basis X;, Y, Z; of ©;,
i=1, 2 with the bracket relations [X;, ¥;]=2Z;, i=1, 2 and all other
brackets zero. The main group G of our basic construction above will
be G1X G.. For each real number A>1 we define a hyperbolic auto-
morphism f, of G by specifying fJ (fJ, ®, &, etc. as in the above con-
struction) on @ in terms of the basis as follows.

ExAmpLE 1 ExaMPLE 2
X1 —AX, X — X,
V,—\Y, Vi— 237,
Z1— N2,y Zy— N7,
X, — A 1X, X, — 21X,
YVo— 27, YVo— MY,
Zs—N3Z, Zs— N2Z,

Note that in both examples brackets are preserved. In Example 1,
one sees that &%, ®¢ are both ideals which coincide with nilsubalge-
bras ®; and ®; respectively. In this case G is the product of the cor-
responding subgroups, G=G*XG".

In Example 2, both &* and &* are seen to be abelian, but they are
not ideals and G is not (in the group sense) a product of the cor-
responding subgroups G* and G°.

The next step is to find a uniform discrete subgroup I' C G such that
fo(T) =T For this we will use matrices with coefficients in an alge-
braic number field. Let K =Q(3%2), the number field of 312 adjoined
to the rationals, and ¢: K—K the nontrivial Galois automorphism
(sending 3'2 into — (31/2)).

We may suppose that & and ®; are each represented by matrices
of the form,
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0 X Z
(3.8) 0 0 Y| X,Y,ZER
00 0

and @ =, X &, becomes the space of matrices
4 0
(0 B)’
A, B each of the form (3.8). We will take I'y then to be the lattice of
® of matrices of the form
4 0
(0 A")

where 4 is as in (3.8) but X, ¥V, Z are restricted to be algebraic in-
tegers in K and A° is the image of 4 under the map induced by
g: K—K.

Then if A=2+43%2, A\\*°=1 and fJ preserves I'. We take I" to be
the image of T'y under the exponential map ®—G. Then it can be
proved that I' is a uniform discrete subgroup of G with f,(I') =T.
This finishes the description.

One can generalize the previous construction by using a diagonal
process defined by the Galois automorphisms of an algebraic number
field. See Weil [125] for this type of argument.

It seems possible that if fEDiff (M) is Anosov, where M is com-
pact, then M is covered by Euclidean space M, and that even the
induced Anosov diffeomorphism on M is topologically conjugate to a
linear hyperbolic map. However, we have an example of an Anosov
diffeomorphism f: V-—V where V is a simply connected complete
Riemannian manifold, noncompact and not Euclidean space. This
example goes as follows.

The construction starts with G as SL(2, C) and proceeds something
like our earlier nilpotent examples (but no I' this time).

Let ¢: G—G be the inner automorphism obtained by conjugation

with the matrix
a 0
1=(5 o)
0 ot

in G where a> 1. Then if e*¥4; —( is the Lie algebra automorphism,
we have the invariant decomposition @ =®*+G*+% where &° is
contracting under e*4, &* expanding and k is invariant pointwise.
In fact % is the Lie algebra of the centralizer H of 4, of all diagonal
matrices. Just as in the previous construction we put a metric on
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®=T,.(4) which is right translated around, but contains a degenerate
component corresponding to .

On G/H, however, the degeneracy is divided out so that we have
an induced Anosov diffeomorphism ¢¢: G/H—G/H. G/H is a 4-
dimensional manifold which is not contractible, but clearly simply
connected.

Novikov informed me that he could prove that if f&EDiff (M) is
Anosov, M compact, where the dimension of W*(x) is one less than
the dimension of M. then m (M) is abelian and M is covered by
Euclidean space.

The two dimensional toral example was first communicated to me
by Thom to show that there was an open set in Diff(72) of diffeo-
morphisms with no contracting periodic points, therefore implying
that diffeomorphisms satisfying (2.2) were not dense. After adding
some geometry to the example, I showed it to Anosov when I spoke
on the examples of §1.5 in the Soviet Union in 1961. By 1962 Anosov
announced his theorem on structural stability in the context of what
is called here Anosov diffeomorphisms. Proofs have now appeared [9].

The problem of the existence of (compact) nontoral diffeomor-
phisms was posed by Anosov in his Congress talk, Moscow 1966.
Previously, after putting this problem into Lie group perspective,
I had consulted many Lie group experts to arrive finally at what is
here. In particular, conversations with Boothby, Borel, Hochschild,
and Langlands were very helpful. The 6-dimensional Example 2 as
well as the explicit algebraic number theory approach were given to
me by Borel.

I.4. The zeta function of a diffeomorphism. Suppose f: M—M is
a diffeomorphism with the property that N, < «,m=1,2, - - - where
Na=N,(f) is the number of fixed points of f. This is a generic prop-
erty (see §1.6). Then following Artin-Mazur [12], one defines the zeta
function of f as the formal power series {(f) =exp)_m_,(1/m)Nyt™.
This turns out to be an interesting invariant of f. Of course {; () =¢ ()
is an invariant of the topological conjugacy class of f and even of the
conjugacy class “on Q” of f.

The zeta function thus contains all the information about the
numbers N, =N,(f) where N, counts all the periodic points of
period m. But this is different from K, =K,(f) which denotes the
number of periodic points of least period m. The number K,, is more
directly interesting in many respects and it is natural to ask for the
relation between N, and K,. From the definition it follows directly
that
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(4.1) PROPOSITION.,

Y. Ki=Nn
ldivides m
Narasimhan pointed out to me that one solves (4.1) for the K,
by the Mobius inversion theorem (see [36]). This gives

(4.2) PROPOSITION.

Kn= 2 u()Nnpn
ldivides m

Here if I=p; - - - p, where the p; are distinct primes, then u(l)
=(—1), u(1) =1, and if I contains a power of a prime, u(l) =0. The
function u(l) is called the Mébius function.

Observe that m always divides K, (i.e., K,,/m&EZ*).

The inspiration for the above zeta function is the Weil zeta function
of an algebraic variety over a finite field. Dwork recently proved the
rationality of this zeta function, see [101] for a general reference.

For the differentiable version, there is the following theorem.

(4.3) THEOREM (ARTIN-MAZzUR [12]). For any compact manifold,
there is a dense set of Diff (M) for which the following etsimate holds:

Nn. = Ck™

Here C, k are positive constants which depend only on the diffeo-
morphism f and N, =N,(f).

(4.4) CoRroLLARY. For a dense set of Diff (M), the zeta function has o
positive radius of convergence, so it can really be considered a function.

Actually Artin and Mazur define N, to be the number of isolated
fixed points of f”, while permitting f” to have an infinite number of
fixed points. Thus, for example, they do not know whether the fixed
point set is finite for the maps in the dense set they obtain.

The proof of (4.3) uses algebraic approximation techniques which
go back to John Nash [73]. Actually Artin and Mazur define {(¢)
for differentiable maps for which N,, < » and prove their theorem in
the more general context of differentiable maps. The following prob-
lem then becomes important.

(4.5) ProBLEM. Is {(¢) generically rational (i.e., is {; rational for a
Baire set of f)?

This goes beyond their theorem in two ways. First, generically true
means true for a Baire set which, of course, is much bigger than sim-
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ply a dense set. Secondly, rationality is stronger than possessing a
positive radius of convergence. Rationality is especially important
because this means for the diffeomorphism that the poles and zeros
of the zeta function, a finite number of invariants, determine the
infinite set of N,.. The IV, are of course very important objects to get
ones hands on.

In the direction of (4.5), Artin and Mazur [12] asked if diffeo-
morphisms in their dense set have a zeta function which is algebraic.

More recently, there has been proved the following

(4.6) TusoreEm (K. MEVYER). If fEDIff (M), M compact, satisfies
Axiom A (see §1.6), then the estimate of (4.3) s valid.

K. Meyer’s proof of this is very simple and if one had the density
(see §1.6) for Axioms A and B, this would of course supersede (4.3).

We will now examine the zeta function for our examples.

If f: M—M is a diffeomorphism such that N, <« for all m&Z
and A is a closed invariant subset of M, then by definition {A(f)
=exp D m.1(1/m)Nytm where N}, is the number of x €A such that
fm(x) =x.

(4.7) PRrROPOSITION. Suppose for fEDiff (M), the periodic points are
all contained in the union of two disjoint closed invariant subsets Ay, Ag

of M. Suppose also that {a, and {a, are rational (or convergent). Then
$r=¢ s rational (or convergent) and in fact () =4, (t) - $a, ().

Proor.

Ny + N, N, N
() = exp Z —— ™ = exp Z — ™ exp Z — i = 2,0 04,0
m m m

(4.8) LEMMA FrROM CALcuLus. log (1/(1—9)) = D, (1/k)y"

For the diffeomorphisms of (2.2) the following theorem gives the
zeta function.

(4.9) TurorREM. Suppose for fEDIff (M), Q is finite. Then clearly
Q=U,ep Q, where P is the set of periodic orbits of f, and Q. is the set of
points of Q in vy. The zeta function of f is the following, where m(y)
= pertod of v,

¢ =11

vep 1 — §mr)

PRrOOF. By (4.8) 1/(1—1t"(y))=exp D r,(1/E)i™% Apply (4.7).
The Lefschetz number L(p) =L(p, f) of a hyperbolic fixed point p
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of fEDiff (M) may be defined most simply, perhaps, as 1 where the
sign is the sign of det(I — Df(p)), I: T,(M)—T,(M) being the identity.

A modern proof of a more general version of the following theorem
of Lefschetz may be found in Dold [26].

(4.10) LerscuETZ TRACE FORMULA. Suppose fEDiff (M) has only
hyperbolic fixed points and Fix(f) denotes the set of fixed points of
f. Then

2. L(p) = A(f) where

pEFix(f)
dim M
A(f) = 22 (—1)¢ Trace(fs,: H(M, R) — HiM, R)).
=0
Here f, is the induced automorphism of the sth homology group
of M with real coefficients.
The following proposition follows from the definition of L(p) and
the eigenspace decomposition of Df(p). (One may assume Df(p) to be
semisimple in the proof.)

(4.11) ProrosiTIiON. For pEFix(f), fEDIfi(M), L(p)=(—1)*A,
where u=dim W=(p) and A= +1 if f preserves orientation on W+(p)
and A= —1 if f reverses 1t.

The following is well known and will be useful in computing the zeta
function for some of the Anosov diffeomorphisms.

(4.12) PrOPOSITION. Suppose f& Diff (M) is such that for every m € Z*
and every xCSFix(f*), L(x, f*)=-1. Then ()= [[&=¥ t.(t) o
where

@ =1 —xit)™ and Ayj=1,---,dim H(M, R),
J

are the eigenvalues (generalized and counted with multiplicity) of
Sfx;t Hi(M, R)—>H;(M, R).

Proor. By (4.10)

dim M
Nm(f) = Z ("D‘Trace(fm)*n m=1,2,3,---
=0
dim M | dim H;

Il

> (-1)' ;1 Ari.

=0

So we obtain
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© | dim M gdimH
log¢() = 22— 20 (=1 2 M
m=1 M =0 r=1
or
dim M ¢
t@ = II te»
=0
where
© | dim H;
log () = 22— 22 (Aah)™
m=1 M =1
dim H; 1
= E N (Airt)m
r=1 m=1
dim H;
log £4()) = 2. log(l — i\i)™* by (4.8)
r=1
and
dim H;
&) = H (1 — )L
r=1

For any fEDiff(M), the function {(f) defined in (4.12) is well
defined even though L(x, f) is not always 1. It will be called the
false zeta function of f and denoted by {(f) or {;(f). It is rational and
its expansion counts the periodic points algebraically. In fact, the
whole difficulty of the problem of the rationality of the (honest) zeta
function is that it counts the periodic geometrically, not algebrai-
cally. Proposition (4.12) shows that under the condition L(x, f») =1
for all x€Fix(f*), and m&Z*, the false and honest zeta functions
coincide.

Note that if N, is the number of points of f of period 7 counted
algebraically, i.e., N = D serizg™ L(p, /), then (4.12) shows that
t(t)=exp D maa(1/m)N,tm and one can see how the following the-
orem of Fuller [31] fits into this context (see also [38]).

(4.13) THEOREM. Suppose h: L—L is a homeomorphism of a poly-
hedron of nonzero Euler characteristic. Then kb has a periodic point.

Otherwise all the N,, would be zero and ¢ would be one. But the
degree of { is minus the Euler characteristic (from (4.12)).

(4.14) PrOPOSITION. Suppose f: M— M is an Anosov diffeomorphism
such that the corresponding expanding bundle E* is orientable. Then
is rational and
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(a) if Df: Ex—E" is orientation preserving then
=5 if dim fiber E* is even,
¢ = 1/§; if dim fiber E* is odd,
(b) of Df: E»—E* is orientation preserving then
&) = §(—1) if dim fiber E* is even,
&) = 1/§(—18) if dim fiber E* is odd.

This follows directly from (4.11) and (4.12).

It seems likely that looking at a double covering of M, one could
furthermore prove that the zeta function of every Anosov diffeo-
morphism was rational.

For the toral case of §1.3 defined by hyperbolic f,&GL (%, Z), one
finds the zeta function defined explicitly in terms of the eigenvalues
of fo. In this case fy coincides with the automorphism of H(T™, Z)
induced by f: T»—1™, By the Kunneth formula the whole cohomology
ring of I™ is given as a tensor product of H*(T") and so one obtains
all of the eigenvalues of f*: H*(I™)—H*(T") as products of the eigen-
values of fo. One thus obtains easily via (4.14)

(4.15) PropoSITION. For the toral diffeomorphism f: Tr—1T" defined
by hyperbolic foGL(n, Z) with the eigenvalues M - - - Na 0of fo, we
have:

@ A¢m = TLa—x),

(b) f(t) = H(l_)\hxiz A ki];t)(_l) ’

Al (b, -+ -, ) D1 S 41 <2< -+ <t = m,

(c) ¢(@t) is defined from {(t) according to (4.14) where one checks the
appropriate case from the N; with | ;| >1.

Finally, we remark that through the work of Matsushima [63],
Mal’cev [61], Nomizu [75], and Kostant [54], one can compute the
zeta functions for the nilpotent examples of §1.3 quite explicitly.

I.5. Shift automorphisms and homoclinic points. From the pre-
ceding sections, one might ask whether the set Q of nonwandering
points must be a manifold generically (allowing certainly for com-
ponents to have varying dimensions). The examples of §§I.2 and 3
have this property. Here we will see that the answer is no, and in
fact give an example of a diffeomorphism of S2?, Q-stable, such that
2 is the union of a Cantor set and two isolated points.

First a description of the shift automorphism of symbolic dynamics
will be given (see [14] or [35a] for more details). Let S be a finite set,
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discrete topology, consisting of N elements and define Xg to be the
set of functions from Z to S provided with the compact open topology
(Z has the discrete topology). If e € X, the value of ¢ at m&EZ will
be denoted by a,, and we write a = [[¢,. Then a may be thought of
as a doubly infinite sequence of elements of .S with a decimal point
between a and @y, thus a a=(- - - @_1a¢-@1a2 - - - ). An important
special case is where .S has two elements and here we could assume
each q; is either O or 1. For general S, X is homeomorphic to a Cantor
set.

Define a map a: Xs—Xgs by (2(@))m =0m+1. In terms of the doubly
infinite sequences, a shifts the decimal point one place to the right.
It is easily seen that a is a homeomorphism, called the shift auto-
morphism of Xg. It has been widely studied in ergodic theory and
probability [14] as well as topological dynamics [35a].

(5.1) ProrositiON. The periodic points of o are dense in X g and if
Cy 1s the number of periodic poinis of period k (i.e. fixed points of oF)
k>0 then C,= N* where N is the cardinality of S.

ProoF. The element a= [Ja.EXs will be periodic of period
precisely when an=anx for all m&Z, Thus it is determined by
ay, + -+, @ with a1, - + -, ap arbitrary elements of S. Given any
b= [[p.EXs and K large, one can choose a periodic approximation
a= Ham of b with a;=0b; for I%l < K. The proposition follows.

(5.2) CorOLLARY. The zeta funciton for a: Xs—Xs can be defined
as in §1.4 and in fact §(t) =1/(1— Nt) where N = cardinality of S.

This follows from (5.1) with the aid of (4.8).

M. Morse has proved (see [35a]) that there is a subset of X,
homeomorphic to a Cantor set, which is a minimal set for a.

To see how symbolic dynamics enters into our diffeomorphism
problem, we will first describe an example of a diffeomorphism g
mapping a subset Q of the plane into the plane. Here g(Q) is not a
subset of Q, but eventually we will use g to define a global diffeo-
morphism f of S? onto itself. One might think of Q as a neighborhood
(not invariant) of an indecomposable piece of the nonwandering
points of this f: .5?—.52

Take then Q to be a square in the plane R?, for example,
Q={(x, y)ER?||x| =1, |y| =1}. Then g will map Q into the region
bounded by dotted lines with g(4) =4’ etc. in Figure 1.
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We will take any such g which has the following properties.

(a) gis a diffeomorphism of Q onto the region in Figure 1 bounded
by dotted lines sending 4—A4', B—B’ etc.

(b) on each component Py, P, of g~1(g(Q)M\Q), g will be a linear
map (up to a translation).

To understand (b) note that as a consequence of it, Py, P; will be
as in Figure 2 and g(P;)=Q,;, =1, 2.

The reader will be able to verify that the intersections of all the
images gn(Q), m=1, 2, - - - or, more accurately, N, g*(Q™) where
IQ(T) =(QNimage g™ !, is a product of a Cantor set and the interval

x| =1.

Define A to be the intersection, Nnuez g7(Q™), Qo=0Q, Q™ as above
for m >0 and for m <0, Q = gm(Q®+D), Thus A may be thought of
as the set of nonwandering points of g: Q—R2

The careful reader will be able to check for himself the next proposi-
tion (which is in [115]).

(5.3) ProrosiTiON. The subset A of Q is compact, invariant under g,
indecomposable and on Q, g is topologically conjugate to the shift auto-
morphism a: X s—Xs, with the cardinality of S=2.

Furthermore one can prove stability with the less obvious proposi-
tion [115].

(5.4) PROPOSITION. For a perturbation g’ of g, A’ defined similarly
1s also compact and invariant under g'. Then g': A'—A' is also topo-
logically conjugate to the shift o: X s—X 5.

Thus (at least after we globally extend g) we have another example
of a stable indecomposable piece of nonwandering points.

One may modify the above example in the following way. The
image g(Q) may wind half-way around Q before passing through Q
the second time, or even wind around Q several times for that matter
(Figures 3 and 4). This won’t change g: A—A, but g will be different
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on U(A) where U is any neighborhood of A. The intrinsic picture
(with respect to Q) is the same for Figures 1, 3, 4 but they differ
extrinsically (in any neighborhood of Q).

Cl
A 1

FIGURE 3 FIGURE 4

One may further modify the above examples by having g(Q) pass-
ing through Q several times (see Figures 5 and 6).

c D c D »
| B
B S — B’ | ——]
( — ]
u‘__\\
("
\'—"—\ D S —
b =}
CI I ——
A'r—
A B A B
FIGURE § FIGURE 6

In all of these examples it is important to keep the linearity condi-
tion (b) above. Then one may define and analyze A as in the first
case. Always g: A—A will be topologically conjugate to a shift auto-
morphism a: Xs—Xg and stably so. The cardinality of .S will equal
the number of components in QMg(Q), e.g., three for Figure 5 and
four for Figure 6. Thus all of the shift automorphisms occur in the
above framework.

To really complete this picture, A above must appear as an inde-
composable piece of the nonwandering points of a global diffeo-
morphism. We construct such an f: S?—S? now which extends the
map g: Q—R? of Figure 1. Consider Figure 7.

We have put the square Q into a disk D*CR? and we extend g to
go: D?—D? by mapping G diffeomorphically onto G’ and F onto F'.
The map go: F—F' is defined so that it is a contraction about some
fixed point p, in F’. This go: D2—D? will be a diffeomorphism of D?
onto a subset of D? so that the nonwandering set is the disjoint union
of A and p,. Finally one easily extends go to f: S2—S? so that the non-
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wandering points @=Q(f) =AUpUg, where g, is an expanding fixed
point of f outside of D2 This f is our desired global diffeomorphism.

At this point it seems appropriate to give a general way of con-
structing Q-stable diffeomorphisms of .S2.

Take any diffeomorphism f: S2—S? satisfying (2.2) with a con-
tracting fixed point p. Let V be a contracting disk neighborhood of p
and redefine f on V to be go as described above (the “surgery” of §1.10).
More generally let f: S?—S?2 satisfy (2.2) with a contracting periodic
orbit ¢y, - - -, pr and let V be a disk neighborhood of p; such that f*
contracts V into its interior. Then one modifies f (via surgery again)
on UL (V) to obtain f’: S?—S? so that on V, f* is conjugate to go
above.

Finally a straightforward modification of the previous construction
allows one to introduce into any diffeomorphism f: S?—S5? satisfying
(2.2), indecomposable pieces A topologically conjugate to shift auto-
morphisms on N symbols (cardinality S=N) where N can be any-
thing we like.

In all of these examples the indecomposable pieces of Q are shift
automorphisms, finite periodic orbits or products of the two. We see
easily from previous remarks that the zeta functions of these f: S2—S?
are finite products of factors of the form 1/(1 —N:?) where NV and ¢
are positive integers.

It should be noted that the Lefschetz Trace Formula imposes con-
ditions on what products of the above form can occur in these
zeta functions. It restricts the N; p; that can occur in {(s)
=l (1 —Ngm)—.

One can see an analogy between the shift automorphism and the
nilmanifold examples of §1.3 by considering the shift automorphism in
the following light.
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Let Z, be the cyclic group with # elements and for each mEZ let
Gn be the abelian group of formal power series (starting at m),
flx) = D2, ax’ with a;EZ,. Put the structure of a compact group
on G, with the product topology. Define the locally compact group
of all power series by G=U,ecz Gn. The map ¢*: G—G defined by
f—=xf is a contraction while ¢*: G—G defined by f—x~f is an expan-
sion.

It is easily checked that the subgroup I' of GXG defined by
I'={(f, H|f(x) a polynomial in G, f(x) = > %, ax’, f(x) = D a_ux'}
is uniform (compact quotient) and discrete. The “hyperbolic” auto-
morphism ¢*X¢*: GXG—G XG preserves I' and the induced homeo-
morphism ¢: G/T—G/T is precisely the shift automorphism on 7
symbols.

One may identity ¢*: G—G above with g: W*(p)—W*(p) where
pEA, A as in the example of Figure 1, n=2, W*(p) = W*(p)NA.

There is a very close relation between the shift automorphisms
discussed above and what are called homoclinic points, first discov-
ered (in the restricted 3-body problem) and named by Poincaré [90].

A homoclinic point of fE Diff (M) is a point of intersection x & W*(p)
NW«(g). If W*(p) and W+(q) are transversal at x, then x will be
called a transversal homoclinic point.

As realized by Poincaré [90], homoclinic points complicate the
orbit structure of a diffeomorphism considerably. The orbit of a
homoclinic point consists (clearly) of homoclinic points. Taking the
case p=g, one sees that the existence of homoclinic x forces W*(p)
to double back on itself oscillating faster and faster as it does so. For
example, for the plane, we will obtain behavior something like that
described in Figure 8.

D

-
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This is the same phenomena that is occurring in Figure 1, but
looked at in a different way. In fact, the best way to understand what
is going on in Figure 8 is to imbed it (in some sense) in Figure 1. A
great advantage of the horseshoe approach of Figure 1 is that one gets
a satisfactory picture of the orbit structure and stability while a given
homoclinic point at first glance seems to defy analysis. That is the
idea behind the following theorem [115].

(5.5) THEOREM. Suppose x is a transversal homoclinic point of
fEDIf(M). Then there is a Cantor set ACM, xEA, and mEZ* such
that f»(A)=A and f= resiricted to A is topologically a shift automor-
phism.

By (5.1) this implies:

(5.6) COROLLARY. In every neighborhood of a transversal homoclinic
point of fEDiff (M), there is a periodic point.

We interpolate a little curiosity. Note that for the shift on \ sym-
bols, N,,=A" so that by (4.2) and the fact that K,/m&Z+, K,
= > ym u()A"1=0 mod m for every N\, m EZ+. This number theoretic
identity for m a prime becomes A?=X\ mod p, or Fermat’s Theorem.

The material in this section is mainly taken from [115] with a
number of examples and figures added. The shift automorphism goes
back to Hadamard (but it is even sometimes called the Bernoulli
automorphism!) who used it to study geodesic flows on 2 manifolds
of constant negative curvature [40]. M. Morse [69] obtained further
results in the same context.

G. D. Birkhoff [17], [18] in his works on surface diffeomorphisms,
studied homoclinic points. In [17], Birkhoff proved (5.6) in dimen-
sion 2, and in his [18, p. 184] he noted a resemblance between his
homoclinic points and Hadamard'’s shift automorphism.

I came across the “horseshoe” of Figure 1 when I was trying to get
a geometric picture of a variant of van der Pol’s equation in N. Levin-
son’s paper [58]. He had written me earlier that this equation had
stably an infinite number of periodic solutions. The “horseshoe” was
the first example of a structurally stable (or Q-stable) diffeomorphism
with an infinite number of periodic points [113].

Putting the shift automorphism into the group theoretic frame-
work was done with the aid of Cal Moore.

1.6. Unification. The work of the present section is motivated by
the search for unity in the examples and phenomena of the preceding
part of the paper. Anosov’s work on hyperbolic structures on mani-
folds gives a clue on how to proceed. The Anosov diffeomorphisms,
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however, are rare among all diffeomorphisms; only certain manifolds
even permit them. One is looking for a class of diffeomorphisms which
include all of the previous examples in a transparent way and will at
least have the possibility of including an open dense subset of Diff (M)
for each compact manifold M. This is provided by diffeomorphisms
described now, i.e., those satisfying Axioms A and B below.

Suppose then f: M— M is a diffeomorphism of a Riemannian mani-
fold and ACM is a closed invariant subset. We will say that A is
hyperbolic (or has a hyperbolic structure) if the tangent bundle of M
restricted to A, Th(M) has an invariant (continuous) splitting under
Df: TaA(M)—>Tx(M), Ts(M)=E*+E* such that Df: E*—E?* is con-
tracting and Df: E*—E* expanding (see §1.3 for these definitions).
The dimension of the fiber of E* need not be constant but only locally
so. Since A is invariant, Df is an automorphism of the bundle T',(M)
and this with the Riemannian metric gives sense to the above defini-
tion. Note that if A (or M) is compact, one may dispense with the
Riemannian metric by (3.1).

The simplest examples of hyperbolic sets for diffeomorphisms are
first of all the hyperbolic fixed points (§I.2) and the hyperbolic
periodic points. The finite union of these cover the case of A finite.
Next, of course, the Anosov diffeomorphisms of §1.3 are examples
where the whole compact manifold is hyperbolic. Also for the ex-
amples of §1.5, the A homeomorphic to a Cantor set is easily checked
to have a hyperbolic structure. In all of the above examples the hyper-
bolic sets consist of nonwandering points and the periodic points are
dense in each of them (up to the unsolved problem (3.4)). The fol-
lowing is an example to show that hyperbolic sets need not satisfy
either of these properties.

Take a diffeomorphism satisfying (2.2) which has a heteroclinic
point xEW*(p)N\W4(q). The 2-dimensional example of Figure 3,
§1.2, will do. Thus Q is hyperbolic and one may extend this hyperbolic
structure to the orbit of x. In fact the tangent spaces of W*(p) and
We(g) at x give the desired splitting at x and similarly for each point
in the orbit of x. The orbit of x together with Q is a closed invariant
set and this gives the example. The closure of the orbit of x is an
indecomposable hyperbolic set.

Recall that a homeomorphism %: X—X is said to be topologically
transitive if there is a dense orbit. Then the dense orbits form a Baire
set of X (assuming that X is a compact metric space).

We will now consider a diffeomorphism f: M—M of a compact
manifold which satisfies the following two properties [116].
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(6.1) Axiom A: (a) the nonwandering set Q is hyperbolic. (b) the
pertodic points of f are dense in Q.

Of these two properties (a) is the most important in what follows.
In fact (b) may even be a consequence of (a). The above example
however shows that a proof of (a)=(b) must use the fact that Q
consists of nonwandering points.

(6.2) THEOREM (SPECTRAL DECOMPOSITION OF DIFFEOMORPHISMS)
[117]. Suppose f: M— M satisfies (6.1). Then there is a unique way of
writing Q as the finite union of disjoint, closed, invariant indecomposable
subsets (or “pieces”) on each of which f is topologically transitive:

Q=QIU-~-UQ,C.

(6.3) CoroLLARY. If f: M—M is as above one can write M canoni-
cally as a finite disjoint union of invariant subsets M =Uf., W*(Q,)
where W*(Q) = {xE M| fr(x)—Q;, m— o }.

As the remarks at the beginning of this section indicate, the ex-
amples of §§1.2, 3 and 5 satisfy (6.1).

The spectral decomposition theorem gives a little perspective on
the question of rationality of the zeta function. The zeta function
of such an f will be a product of zeta functions, one for each Q;. It
seems plausible to me that each of these zeta functions is rational.
The results of §§1.4 and 1.5 are consistent with this.

We explain why we use the words “Spectral Decomposition for
Diffeomorphisms” in (6.2). The decomposition of the manifold into
invariant sets of the diffeomorphism is quite analogous to the de-
composition of a finite dimensional vector space into eigenspaces of a
linear map. In one case we are considering automorphisms in the
category of differential topology, in the other, finite dimensional
vector spaces.

As Jacques Tits pointed out, one may make this more precise by
actually putting a linear transformation (generically) into the frame-
work of (6.2). Suppose then u: V—7V is a linear transformation of a
complex n-dimensional vector space. By multiplying by a constant,
we may suppose # has determinant 1, ie., #ESL(z, C). We will
furthermore suppose that the eigenvalues N\, - - -, \, of # have dis-
tinct absolute values which are not one. Consider the induced diffeo-
morphism of projective space #y: P*~1(C)—P*1(C) defined on co-
ordinates by Z,—\;Z;. Then u, will satisfy (2.2) with Q consisting of
n fixed points (0 - - - 01 0 . - - 0). The two ways of looking at the
spectral decomposition coincide.
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Now we state the second of our two main axioms (introduced in

[117]).

(6.4) Axiom B. Suppose that fEDIff(M) sabisfies Axiom A and
that Q;, We(,), etc. are as in (6.1), (6.2), (6.3). Then if W*(Q)
NW=(Q,)#= &, there exist periodic points pEQ;, gEQ; such that We(p)
and W*(q) have a point of transversal intersection.

The following generalizes the theorem of Palis, see [82] and §I.2.

(6.5) THEOREM. The set of f&Diff (M) which satisfy Axioms A and
B are open and such f are Q-stable.

Assuming f, Q;, etc. as above, we say that Q;=Q; if W*(Q,)
NW=(Q;) % &. Then we also have (generalizing theorems of §2)

(6.6) THEOREM. If fEDIff (M) satisfies Axioms A and B, then = is
a partial ordering which is preserved under perturbation.

These theorems (6.2), (6.3), (6.5), (6.6) have no proofs in the litera-
ture, but we will try to give a good sketch of their proofs in §§I.7
and 8, §1.7 for (6.2) and (6.3), §1.8 for (6.5) and (6.6).

We say that Q;,£Q,2Q;,< - - - £Q,, is a maximal chain if the
Q,; are distinct, and # is maximal.

For every f&Diff (M) satisfying Axioms A and B, we define the
diagram A(f) as fallows. A(f) is a linear graph whose vertices cor-
respond to the ©;, labeled by conjugacy class, and directed 1-simplices
join consecutive vertices of maximal chains. The diagram A(f) is
invariant under perturbations of f. Generalizing problem (2.4) is

(6.6)a ProBLEM. What diagrams can occur for diffeomorphisms
satisfying Axioms A and B? Given first the manifold M, what dia-
grams can occur for fEDiff (M) satisfying Axioms A and B? Finally
one can label the diagrams with conjugacy classes of germs of dif-
feomorphisms on neighborhoods of the Q; as in §1.2 and ask the above
two questions for these labeled diagrams.

One can see that a prototype of diffeomorphisms satisfying Axioms
A and B are those of §1.2 with Axiom 3 replaced by Axiom 3’ there.
The above results may be construed as saying that we have succeeded
in relaxing the hypothesis that Q is finite. The diagram here gives sort
of a very generalized gradient structure to these diffeomorphisms.

The main point of Axioms A and B and subsequent theorems is
that the hypotheses include and unify all known Q-stable diffeo-
morphisms, while describing an open set of Diff(M) which is ame-
nable to study. In fact the above theorems as well as those in the
future sections give the beginnings of a structure theory for diffeo-
morphisms satisfying Axioms A and B.
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Thus the question, “are these diffeomorphisms dense in Diff (M),”
becomes particularly sharp. This is not yet settled. In this direction,
the first theorem is

(6.7) THEOREM. For compact M, the following properties of
fEDIfI(M) are generic:

(a) Every periodic point is hyperbolic.

(b) For each pair of periodic points p, gEM, W*(p) and W=(g)
have transversal intersection.

This is proved in [55] and [114]. In [86] there is a polished version,
which also proves the noncompact case. In [2] there is an account
done in the general framework of transversality theory.

Note that if f satisfies (6.7)(a) then for each m&Z+, the number of
periodic points of period m is finite, i.e., N, < .

The other main approximation theorem is related to Pugh’s C*
solution of the problem of the “closing lemma” [91]. This can be
stated as follows.

(6.8) TueorEM (PuGH). Suppose fEDIfi (M), and xS M is recur-
rent in the sense that ¢: Z— M defined by ¢(m)=fm(x) is not a homeo-
morphism onto its image. Then there is a C* approximation f' of f such
that x becomes a periodic point of f'.

Pugh uses the methods of (6.8) to prove the following [92].

(6.9) THEOREM. For compact M, the property (6.1)(b) is generic in
the C* sense. In other words suppose we put the C* topology on Diff (M)
and let G be the set of fEDII(M) with the property that the periodic
points are dense in Q(f). Then G is a Baire set.

Unfortunately the Cr analogues for r>1 of (6.8) and (6.9) are yet
unproved. Furthermore, in my opinion, it is important to find “con-
ceptual” proofs of Pugh’s important results.

We end by stating the three basic problems raised here.

(6.10) ProBLEMS. (a) Approximation problem: For compact M,
approximate (C7, large r preferably) any fEDiff (M) by f’ satisfying
Axiom A and Axiom B. In this perhaps the most important property
is Axiom A(a).

(b) Find all (in some sense) possible indecomposable hyperbolic
sets of nonwandering points up to topological conjugacy. This in-
cludes, as a special case, find all Anosov diffeomorphisms (such that
Q=M).

(c) Find the possible ways of fitting the W*(;) together to define
f: M—M as in (6.3) and (6.5). This is sort of a generalized Morse
theory type problem and essentially problem (6.6)a.
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It could happen that (6.10)(a) has a negative answer. This would
add difficulty to the conjugacy problem! One would proceed by
adding the corresponding counterexamples to those of this paper and
enlarge the unifying framework.

On the other hand an affirmative answer to (6.10)(a) would imply
that this survey gives the basic framework to the conjugacy problem
and that answering (6.10)(b), (c) would be filling in the body.

I.7. Our goal in this section is to give at least a full sketch of proofs
of the spectral decomposition theorem (6.2) and its corollary. In
doing so we state a general stable manifold theorem and use it to
show the existence of canonical coordinates on our hyperbolic sets.
We first give some preliminary lemmas.

(7.1) LEMMA. (@) If p is @ periodic point of fEDIf (M), and U is
an open set in M such that UNW?*(p) 5=, then the closure of Upso fm(U)
DWH(p).

(b) Furthermore, if q is a second periodic point and We(p)MN\W*(q)
contains a point of transversal intersection, then Unsof "(UYNW*(q) #= &.

Proor. Note first that by replacing f by a power of f, we may as
well assume p and ¢ are fixed points to begin with. Since f: W«(p)
—Wu(p) is an expansion, it follows that if a neighborhood of p in
Wu(p) is in the closure of Un,so f»(U), then so is all of W*(p). Thus we
see that (a) is transformed into a local problem about a neighborhood
N of p by replacing U by f*(U)N\N for some large =.

In case f is linear in some chart about p the conclusion of (a) is
easily checked directly, and finally the general case can be reduced to
this one by an appeal to Hartman'’s (and Grobman’s [74]) theorem
[39], which gives a local topological equivalence to the linear case.

The second part of (7.1) can be proved with little trouble by using
the linear Lemma 5.2 of [115] or one can use again Hartman’s the-
orem and a topological intersection argument. The reduction to the
local case is again clear. A stronger lemma than this, the “A-lemma”
is in [82].

(7.2) LeMMA. Let f: M—M be a diffeomorphism with hyperbolic
periodic points p;, =0, « - -+, n such that po=p.. Suppose for each
1=0, - -+, n—1, x, EW(p) N\ W*(p:i11) is a point of transversal inter-
section. Then each x; is nonwandering.

PrOOF. Let x; for some ¢ be as in (7.2) and U be a neighborhood of
%; in M. Then (Unso f*(U))NW(p;) = every j using (7.1) induc-
tively. By (7.1)(a) Closure U, f»(U)D W=(p;). This shows x; is
nonwandering.
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We next come to the general stable manifold theory which we put
into the following form.

(7.3) GENERALIZED STABLE MANIFOLD THEOREM. Suppose AC M
is @ hyperbolic set of fEDIff (M) (that is, A is compact, invariant with
the usual splitting of Ta(M), see §1.6) with some metric on M. Then for
each xEA, there 1s an injective immersion Jy=J,: We(x)— M with the
following properties:

(@) xET(W*(x)), and y EJ(W*(x)) if and only if d(f(x), f~(y))—0
as m— oo,

(b) f(J(We(x)) =TKsy We(f(x)). Let J.(We(x)) =W*(x) now.

(©) Usea(W*(x)) = {y E M| f"(y)—A, m—eo }.

(d) For x, yEA, W*(x) and W*(y) either coincide or are disjoint.

(e) The tangent space of We(x) at y is E; for each yEA (here E; is
part of the data of the hyperbolic splitting).

() We(x) and W*(y) are C* close on compact sets for x, yEA close.

For A a point this is the stable manifold theorem for a fixed point,
§1.2. In (7.3), W*(x) for x €A is called the stable manifold of x. The
unstable manifold W*(x) is defined as the stable manifold of f~! at x.

We will try now to give the history and background of (7.3). Of
course it all starts with A a point from Poincaré, Perron, etc. as in
§1.2. Anosov, using the basic work of Perron, proved (7.3) in the
case A is all of M. This is the way he proved the structural stability
in §1.3. Seeing the need for a more general version of stable manifold
theory, because of Axiom A, I asked I. Kupka if he could give such a
proof. In substance at least, he proved the above (7.3). All of the
proofs in stable manifold theory, however, have been unsatisfactory
from a conceptual point of view. On the other hand, at this writing it
appears that the situation has been remedied by M. Hirsch. He seems
to have a fully satisfactory proof of the above (7.3).

Added in proof. C. Pugh has a good proof of (7.3).

From the stable manifold theory we now construct what we call
canonical coordinates on Q(f) where fEDiff (M) satisfies Axiom A.
If We(x) is as in (7.3), then we will denote an e neighborhood of x in
We(x) in the intrinsic (metric) topology by W*(x, €). Then let W*(x, €)
be the set W*(x, €)M etc.

(7.4) TaEorREM (EXISTENCE OF CANONICAL COORDINATES). Sup-
pose fEDIfI (M) satisfies Axiom A and that xSQ=Q(f). Then there is
€>0, independent of x, and a canonical map I,: V—M where V is a
neighborhood of xXx in We(x) X We(x), which is a homeomorphism
of V onto a neighborhood of x in Q. On We(x, €) Xx, I, is the inclusion
J¥ and on x X W*(x, €), I, is the inclusion J:. The map I, is defined at
(b, QQEVC We(x, €) X We(x, €) as the unique intersection of W*(p, €)
and W=(q, € in M.
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Proor. This follows directly from a systematic application of (7.3)
and (7.2). The map is well defined into M by (7.3). The image of I,
is in © by (7.2) and the fact that the periodic points are dense in Q.
In a similar way, one checks that a neighborhood of x in @ is in the
image of I,.. The injectivity of I, is a consequence of the stable mani-
fold theorem, that the W*(p) for different p, either coincide or are
disjoint.

Moving toward the proof of (6.2) we give first the following lemma:

(7.5) LEMMA. Suppose fEDIl (M) satisfies Axiom A, Q=Q(f) the
nonwandering points. Given x &Q, suppose N is a neighborhood of x in
Q with the local product structure of (7.4). If U is any nonempty open
subset of N, then Unzo frU and Ungo f7(U) each contain a dense subset
of N.

Proor. It is sufficient to consider just one of the two cases. Let ¢
be a periodic point of U with stable and unstable manifolds W*(g)
and W+(gq). There exist such ¢ since the periodic points are dense in Q
by Axiom A. Now let $ be an arbitrary periodic point of N. There are
points of transversal intersection xEW=(p)N\We(q), x'&EW+(q)
NWe(p), with x, &’ in Q. Then xEU,,50 /U, and so p is in the closure
of Ung0 fmU. Since the periodic points are dense in N, this proves (7.5).

We now prove (6.2).

For x&Q, let N=N(x) be given as in the previous lemma and define
Q,=Closure Unez f»(N). From the previous lemma it follows that
Q. does not depend on any choices. In fact, it follows equally well
from (7.5) that for x, y&EQ, either @, and Q, coincide or are disjoint.
Furthermore the union @=U,Q, is actually a finite union and all of
the properties of (6.2) are checked very easily now using the previous
lemma. Note that one obtains directly that any open set in Q; has a
dense orbit (i.e., Unf"(U) is dense). From Birkhoff [15] one then ob-
tains topological transitivity.

We show how (6.3) follows from (6.2).

For each x&E M, m— « : frx—Q from the definition of nonwander-
ing. Given x & M, we claim there is a unique ¢ such that f7x—Q; as
m— . For each ¢=1, . - -, k, choose open sets V;, U; such that
V:DOU;DQ;, V; disjoint and fUNfU;CV;. Now, given x&M,
suppose there exist k, I such that QN\limg .. fra#J, QNlim, ., 7%
# &, k5£l. Then there exist for each j=1, 2, . . . positive integers
mj, l; such that frixEU,, frthE U, where m;<m;+1;<m;,, for
each j. Then there exists n;, m; <n;<m;+I; such that frix Ut , U,
for every j. Therefore lim;,, tf"ix €, which is impossible. Thus k=]
and our assertion is proved, which in turn yields (6.3).
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Note finally that the following proposition is clear from the previ-
ous material in this section.

(7.6) PROPOSITION. Let Q; be as in (6.2). (a) Then for any xEQ;,
We(x) and W*(x) each contain a dense set of Q;.

(b) In particular if f+ M— M is an Anosov diffeomorphism of a com-
pact manifold with Q= M, then every stable manifold is dense in M.

(©) W*@Q)NWe(Q:) =Qs.

One obtains (a) from the topological transitivity and the local
product structure on ;. (b) follows from (a). One checks (c) by first

showing that W*(Q)NW*(Q,)CQ using (7.2) and the fact that the
periodic points are dense in Q. Then apply (6.2).

I.8. The goal of this section is to sketch the proofs of Theorems
(6.5) and (6.6). We begin by introducing the generally useful notion
of a filtration of a diffeomorphism.

A filtration then of f&Diff (M), M compact, is a sequence of closed
submanifolds, M =M DM DOM;D -+ - D M= where each M is
an open subset together with its smooth boundary and f(M;) Cinte-
rior of M,.

(8.1) ProrositioN. If { M} is a filtration for fEDiff (M), then it is
also a filtration for a C° approximation of f. Furthermore Q(f)MNOM,= &
for each 1.

This is easily checked. If { M} is a filtration for f EDiff (M) then
we can decompose Q(f) =\ « + - UQy, Q; compact invariant, by
defining Q;=QN(M;— M;_1). We will call this the Q-decomposition
of the filtration.

We assume now that f satisfies Axioms A and B, with Q;, W*(Q,),
etc. as in §1.6.

(8.2) ProPoOSITION. If WH(Q)NW(Q;) =&, then for any pEQ,,
qEQ;, We(p) and W*(q) have a point of transversal intersection.

Proovr. This is a consequence of Axiom B and §1.7. Then by (7.1)
we obtain

(8.3) COROLLARY. If WH*(Q)NW*(Q,)= &, then W*(Q;) CClosure
We(,).

(8.4) ProrosITION. If W*@Q)NW(Qip1) =S, 1=0,---, m—1
and Qo=Qn,, then all the Q; coincide.

Proor. Let periodic points p;EQ; for each 4. Then by (8.2), W*(p,)
and W*(p:11) have a point of transversal intersection g¢; for each 3.
Apply (7.2) to see that each ¢;EQ. But then ¢;EQ;MN\Q;41, so indeed
the Q; coincide.

From (8.3) and (8.4) follows
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(8.5) PrOPOSITION. The relation < defined in §1.6 is a partial order-
ing.

REMARK. One could define < in these alternate ways as long as
Axiom B was modified accordingly and the whole theory would be
the same.
Alternate way 1. ©;=Q; if Clos W*(Q;)MNClos W*(Q;) = &.
Alternate way 2. Q; <, if for any pair of neighborhoods U; of ;,
U; of Q; there is xE U;, mEZ* such that f(x) EU..

(8.6) PROPOSITION. Suppose fEDiff (M) satisfies Axioms A and B,
with Q; as in the spectral decomposition theorem. Then there exists a fil-
tration of M, M=MDMD -+ DMp= where QNM;— M;_, s
precisely one of the Q; (re-indexing if necessary, so Q=Q\M;— M;_y)
of the spectral decomposition. Similarly one has a filtration for f-3,
M=M{DOM{D - DM{ =&. Given neighborhoods U; of Q;, one
may choose the filtrations so that U; contains (M;— M; )N\ (M! — M! )
for each i. Consequently perturbations f' of f will satisfy Q(f') CUU..

PRrOOF OF (8.6). One uses the diagram. Start by taking M,=,
M;._1aneighborhood of an extreme vertex (attractor), My_o= M; ,\JTV
where V is a contracting neighborhood of a second attractor, con-
tinuing until all the attractors are used up, obtaining M;DM,; 4
D -+« D M;say. Choose 2; so that Q; is next to only attractors in the
diagram. One defines M; 1 as M;\UW where W is of the form
Unesm>o f7(Ws), mo some large integer and W, is a small neighbor-
hood of ©2;. One may think of W as a neighborhood of W*(Q;). By con-
tinuing in this way one obtains the desired filtrations.

Conversations with M. Shub were very useful in the following.

To prove Q-stability for f €EDiff (M) satisfying Axioms A and B,
one generalizes the procedure of Moser in the Appendix written by
Mather. Instead of the map 4 defined there one uses the map

B: Difi(M) X C°(A, M) — CO(A, M)

defined by B(g, k) =ghf~t. Here C°(A, M) is the space of continuous
maps of A into M with the uniform topology with A=; an indecom-
posable piece of Q(f). C°(A, M) is a manifold and B has its second
partial derivative continuous in both variables. A version of the
implicit function theorem yields a continuous map

h: A—— M such that
h

A— M

lfh lg

A—— M commutes
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(providing g is close enough to f in C'). There remains to complete the
proof of Q-stability of f, two things. First, % is 1-1. Here the Moser
argument does not work. The proof goes by

(8.7) PROPOSITION. f: A—A is expansive. This means there is ¢>0
such that for any x, y EA, x %y, there is n &S Z with d(f*x, f*y) >e.

The proof of this proposition follows from the fact that A is a hyper-
bolic set for f. Then the fact that # makes the above diagram commute
and is close to the identity leads to the injectivity of A.

The second point to check is that when % is defined on each ©; as
above, £(Q(f)) =Q(g). Since the periodic points are dense in Q(f) it
follows that 2(Q(f)) CQ(g). Furthermore, by (8.6) we may assume
that Q(g) Csmall neighborhoods of Q;. Thus the proof of Q-stability
is reduced to the study of what happens in a small neighborhood of Q,.
The stable manifold analysis finally takes care of this last point.

To finish our program, we must show that if g has been chosen close
enough to f, then g also satisfies Axioms A and B. All of this is a conse-
quence of the above provided Q(g) =%(Q(f)) has a hyperbolic struc-
ture for g. This proceeds by showing bounded hyperbolic linear maps
on Banach spaces are open using the spectral theory at the end of
[96], and then using the values of sections of the Banach space split-
ting to reconstruct the vector bundle splitting.

1.9. On basic sets of diffeomorphisms. This section is devoted to
the problem of finding all the possible ©Q; that could occur in the spec-
tral decomposition theorem (6.2) for diffeomorphisms of compact
manifolds satisfying Axiom A. In other words we discuss what is
known about Problem (6.10)(b). Expanding on this define a basic set
of fEDIiff (M) to be one of the ©; of (6.2) where f satisfies Axiom A.

(9.1) ProBLEM. Find all basic sets up to topological conjugacy. Do
they always have a rational zeta function? Are they all locally the
product of a Cantor set and a manifold? Can they be given some type
of algebraic structure?

One can consider a possibly more general, but localized picture by
considering f: U—M with U an open set of M, f a diffeomorphism
onto its image with AC U satisfying

(9.2) (a) A is compact and f(A) =A,

(b) Aisa hyperbolic set for f (see §1.6),

(c) the periodic points of f are dense in A,
(d) f is topologically transitive on A,

() Nmez fm(U)=A.

Since the basic sets have neighborhoods U which satisfy (9.2)
we may consider
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(9.3) ProBLEM. Find all A satisfying (9.2).

There is a construction which allows one to replace f: U—M by
g: U—Uin (9.2). On UXZ say points (x, m) and (x’, ) are equivalent
if x' =g~ m(x). Then the quotient space U is a manifold (not neces-
sarily Hausdorff) and one has a diffeomorphism g: U— U induced by
(%, m)—(x, m—+1). Define AC U as the image of (A, 0) under the pro-
jection w: UXZ—U.

-We will say that A in (9.2) is an attractor if U can be chosen so that
Nnso f»(U)=A. Then when A is the basic set of a diffeomorphism
satisfying Axioms A and B, an attractor corresponds to a vertex lying
at an extreme point of the diagram of f.

A special case of (9.1) and (9.3) is to find the attractors. Note that
no symbolic flow of §1.5 can be an attractor, but that every Anosov
diffeomorphism with Q= M is already an attractor.

We will give an outline of all the ways we know of constructing
basic sets; then we will go into more detail. First consider these four
groups of basic sets:

(9.4) (a) Group 0. These are characterized by dimension A =0.

(b) Group A. This is Anosov case with Q= M.

(¢c) Group DE. These are derived from expanding maps and will
be described subsequently.

(d) Group DA. These are derived from Anosov diffeomorphisms
and will also be described subsequently.

Furthermore one may take finite products of any of these to obtain
other basic sets (see §1.10).

Group 0 is discussed first. This includes the finite A (periodic orbits)
and the shift automorphisms Ay of §1.5. It seems likely to me that
every basic set in group 0 is topologically conjugate to some closed
invariant subset of Ay. Call ACAy a subshift if A is closed, invariant,
and the periodic points are dense in A. One can ask generally to what
extent the subshifts occur as basic sets.

The following construction may shed some light on the above im-
bedding problem. Suppose A is a basic set of dimension 0 relative to
f: U—=M, U,\J - . - UUy a disjoint union of local product neighbor-
hoods of (7.4) which cover A (such U; can always be found). Then let
g: Ay—Ay be the shift automorphism on the N-symbols Uy, - - -, Ux
and define a: A—Ay by alx)(m)=U; where xEA, mEZ, and
f(x) & U;. Then it is easily checked that « is continuous and equi-
variant. Can the U; be chosen so that « is injective?

The following is a nontrivial example of a subshift as a basic set.
We describe it in the following figure as a diffeomorphism of a 2-disk
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into itself which can be extended to a diffeomorphism S$?—S? by
adding an expanding disk to the original.

GI

(o4 | | 23 )
"~!—-}—1——\ rARS Sl
|

Dl

:

A a B D E ~ 8 P H
The construction follows in the pattern of those in §1.5. The diagram
is simply given by & where the top vertex is an expanding fixed point
and the bottom vertex corresponds to the periodic orbit consisting of
b1, P2 and p;. The reader can check that the middle vertex of the dia-
gram corresponds to a subshift A of the shift on five symbols. In fact
if Ag is the shift space on the symbols &, 8, v, 8, p corresponding to the
indicated columns in the figure, then A consists of bi-infinite sequences
which do not carry any of the following combinations By, (9, Bp,
aa, af, v, vv, v, da, 8B, pa, pB.

Generally speaking, relative to a shift automorphism a block is a
finite sequence of symbols, e.g., 8, etc. in the previous sentence. A
subshift is said to be of finite type if it is of the form, all sequences
which do not contain a certain finite set of blocks. Thus the above A
is of finite type.

Related to the previous problems on basic sets of dimension 0 are
the following theorems:

(9.5) TuroreEM (O. LANFORD). Every subshift of finite type has a
rational zeta function.

(9.6) TueoreEM (R. BOoWEN). There exist subshifts with irrational
zeta functions.

In fact Lanford has improved Bowen’s theorem to show that most
subshifts have irrational zeta functions.

We don’t go beyond the discussion of §I.3 on the Anosov case
except to remark that it seems probable that if a basic set is a sub-
manifold then the restriction of the diffeomorphism is conjugate to
an Anosov diffeomorphism.
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J. Moser has shown me an example of a basic set which is a sub-
manifold but not a C! submanifold.

For the DE group we use the examples of Shub [108] of expanding
endomorphisms of compact manifolds—see §1.10. For each expand-
ing endomorphism, we will construct a basic set which is an attractor.
This goes as follows.

Suppose then f: M—M is an expanding endomorphism of a com-
pact manifold. Let D be the unit disk of dimension one larger than
the dimension of M, with M imbedded in DX M as 0X M. Let A
satisfy 0 <A <1 and define gy: DX M—DXM by gr(x, ¥)=Qx, ¥).
Next let ¢: 0X M—D X M be a C! approximation of the map 0 X M
—DX M, (0, y)—(0, f(»)) such that ¢ is an embedding. This is pos-
sible by dimensional reasons (the Whitney imbedding theorem). Let
T be a tubular neighborhood of ¢ (M) with fibers being the various
components of TN (D Xy), y& M. Now extend ¢ to y: DX M—T in
a fiber preserving way so that ¢ is even a diffeomorphism. Our de-
sired map DX M—D X M is then the composition ¥g, =k for A small
enough. It can be checked that for sufficiently small N, the set
A=N,5¢ k"(DX M) has a hyperbolic structure and is in fact a basic
set. It is locally the product of a Cantor set and a manifold whose
dimension is that of M.

The following figure gives DX M and its image under % when the
starting point is the expanding endomorphism of S'—S! defined by
z—g2,

Finally we show how the DA group (9.4d) goes by giving the first
case using an extended type of surgery on the Anosov diffeomorphism
of the 2-torus.

One changes the toral diffeomorphism on a small “square” neigh-
borhood Q of the fixed point corresponding to (0, 0) in R2, Initially
we have the square Q=ABCD linearly mapped into A’B’C'D’ as in
the following figure.
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Without changing the diffeomorphism outside a neighborhood of
the boundary of Q, we can change f on Q so that we have three fixed

points in Q as illustrated in the following figure.

£
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Now T2 can be written as the union of a single two dimensional
stable manifold of the fixed point ¥, W*(x) and a one dimensional

basic A. We leave the (many) details to the reader.

One can apply this construction to any Anosov diffeomorphism.

As this was written, we received a very interesting manuscript of
R. Williams [127] on 1-dimensional basic sets, which certainly ap-
pears to extend some of the above results.

1.10. Final remarks on conjugacy problems. We cover briefly a
number of final miscellaneous points related to the diffeomorphism
problem of part I. The first question is: what role do products play?
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(10.1) PrROPOSITION. Let Q; be the set of monwandering poinis of
fiEDiff (M), i=1, 2. Then the set of nonwandering points of the product
[iXfoEDiff (M1 X M) is contained tn Q9 XQe. Furthermore if the pe-
riodic points are dense in Oy and Qs then Q=0 X Q.

This is checked easily from the definitions.

(10.2) ProrosrtioN. If fiEDiff (M), i=1, 2 satisfying (2.2), then
so does the product fi Xfo& Diff (M1 X My).

This follows from (10.1) and the fact that W*(p, q) = W*(p) X W*(q).
Furthermore one sees from the definitions that

(10.3) ProposITION. The product of two Anosov diffeomorphisms is
an Anosov diffeomorphism.

The last two propositions are essentially contained in (equally
easily checked)

(10.4) ProrositioN. If f;&Diff (M,), i=1, 2, both satisfy Axioms
A and B, then so does the product f1Xfs. Furthermore so does [7', m&Z,
mZ0.

Thus if f1EDiff(M;) is an Anosov diffeomorphism and if
f2EDiff (M,) satisfies (2.2), then the product fi Xf; is Q-stable (6.5).
This product, however, is not structurally stable. Moreover, there is
an open set U, in general, in Diff (M1 X M,) near f with the property
that U contains no structurally stable diffeomorphisms. This is
described in [116]. It is the example mentioned in §I.1 to show that
one had to weaken the concept of structural stability to get a success-
ful theory. There is also an exposition of this fact in [11] and a further
variant in [87].

We now define a modification of diffeomorphisms related to the
notion of “surgery” in differential topology.

Suppose fEDiff (M) has the property that there is a compact sub-
manifold with boundary M;, dim M=dim M;, such that f(M,) is
contained in the interior of Mi. Then it follows that Q=Q(f) is equal
to (interior My)NQJ (M — My)MQ =\ UQ, where each Q; is compact
and invariant. Furthermore, a similar decomposition can be done
even for any sufficiently good C° approximation of f. This is a special
case of the filtrations of §I.8.

For surgery, in addition to the above f suppose that g: V=V is a
diffeomorphism of a compact manifold with boundary into its inte-
rior, Suppose further that there is a diffeomorphism k: Cl(M1—f(My))
—Cl(V—g(V)) with gh=~hf. An isotopy condition on f, g is sufficient
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to guarantee the existence of % at least in case Closure (V—f(V))
=1X V. Then one may replace My by V and redefine f on M, by g
on V to define f': M'—M’', M’ the modified manifold. This turns out
to be a useful construction. One checks immediately that {p
={70{, 07" where [ is f restricted to M;.

A topological version of the ergodic theoretic concept, entropy, has
been defined in [3]. In this paper, the authors showed that this topo-
logical entropy is positive for some of the examples we described in
§8§1.3 and 5. The following problem seems natural,

(10.5) ProBLEM. If Q; is a basic set of a diffeomorphism satisfying
Axiom A (as described in the spectral decomposition theorem (6.2)),
is the topological entropy of Q; positive?

As J. Palis pointed out to me, any Anosov diffeomorphism will
satisfy Axioms A and B. It is possible that applying some of the sub-
sequent theorems, one could obtain an attack on the problem: For
an Anosov diffeomorphism f&Diff (M), M compact, must Q(f) = M?
(See 3.4).

Up to now we have been investigating the dynamical system
generated by a single f&Diff (M). One can generalize this situation
to a differentiable map (or endomorphism) f: M—M (without neces-
sarily having an inverse). This f is not the generator of a group acting
on M, but a semigroup Z+ acting on M. M. Shub [108] has studied
this problem and found that some of the previous results extend to
cover this case and some new features are found here. We state some
of these now.

The simplest new problem coming up in this context is the endo-
morphism of the complex numbers of absolute value one, f:S'—S!
defined by f(3) =27, n EZ, n> 1. Is f structurally stable? As for diffeo-
morphisms, an endomorphism f: M—M is structurally stable if C*
perturbations are conjugate to f by a homeomorphism. Shub gives an
affirmative answer in the following more general proposition [108].

(10.6) PrOPOSITION, Suppose f:S'—S! is C! with derivative every-
where >1. Then f is conjugate by a homeomorphism to z—z* where
n=degree f.

The general questions on endomorphisms of S! are not yet very
well understood. On the other hand Shub has found a satisfactory
generalization of (10.6) as follows.

Say that an endomorphism f: M—M of a complete Riemannian
manifold is expanding if for each v& T (M), | Df»(x) @)|| ZeA"||9]],
m&Z*, ¢>0,A>1 independent of v, x. Examples of expanding endo-
morphisms are, of course, the circle map z—3z* as well as various
products of these on tori.
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(10.7) TueoreEm (SHUB [108]). Any two homotopic expanding
endomorphisms of a compact Riemannian manifold are topologically
conjugate.

(10.8) COROLLARY. Any expanding endomorphism of a compact
Riemannian manifold is structurally stable.

In view of (10.7), the following becomes a reasonable problem.

(10.9) ProBrLEM. Find all expanding endomorphisms of manifolds
(up to conjugacy). Also, is (10.7) true for Anosov diffeomorphisms
of compact manifolds?

Shub proves for expanding endomorphisms that the manifold is
covered by Euclidean space, and has produced, besides those on tori,
examples on the Klein bottle and nilmanifolds.

Presumably, eventually a systematic approach will include the
Anosov diffeomorphisms and Shub expanding endomorphisms. The
unifying definition is, in fact, obvious.

For hyperbolic fixed points of an endomorphism f: M— M, Shub
defines stable and unstable manifolds, generalizing those for a diffeo-
morphism. In this case, however, W* is no longer the image of a cell,
but can be any manifold (i.e., map M into a point po& M and take
any small perturbation. Then the stable manifold of the fixed point
will be M). On the other hand W* is the image of a cell, but not
under an immersion or a 1-1 map.

Shub generalizes the approximation theorem (6.7) to endo-
morphisms.

Previously, holomorphic endomorphisms of the Riemann sphere
had been studied by G. Julia ([50], his “prize memoir”). Stein and
Ulam [119] have made a study of certain polynomial endomorphisms
of the plane using computing machines.

An extremely interesting problem is the study of maps of finite
dimensional manifolds into Diff (M). What are generic properties of
such maps? This is called bifurcation theory. The most important
work on this subject is that of J. Sotomayor [118]. He considers maps
of an interval into the space of flows on 2-manifolds, and obtains a
pretty complete picture in this case.

APPENDIX TO PART I: ANOSOV DIFFEOMORPHISMS
BY JOHN MATHER

In this Appendix, I give an exposition of Moser’s proof that Anosov
diffeomorphisms are structurally stable. (See Theorem 3.3 of §I.3.)
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The main novelty in my presentation is the use of the language of
manifolds of mappings, which seems to result in conceptual simpli-
fication. I would like to thank R. Abraham for suggesting that
Moser’s proof might be simply expressed in the language of mani-
folds of mappings.

We let M be a compact C* manifold and f: M—M a C* diffeo-
morphism. We let D denote the topological space of diffeomorphisms
of M into itself with the C! topology, H the topological space of
homeomorphisms of M into itself with the C° topology (compact open
topology), and C the C* Banach manifold of continuous mappings of
M into itself, where the topology is the C° topology and the manifold
structure is defined in a manner similar to that by which the mani-
fold structures on sets of mappings are defined in [1] (of Appendix).

TueEorREM 1 (ANosov). If f is an Anosov diffeomorphism, then f is
structurally stable. More precisely, there exists a neighborhood U of the
identity of M, idu, in H, a neighborhood V of f in D and a continuous
mapping g—h(g) of V into U such that for all g&V, h="h(g) is the
unique solution in U of the equation

hg = fh.

If E is a vector bundle over M, we let I'(E) denote the Banachable
R-vector space of continuous sections of E over M, with the (C°
topology. If, further, x &M, we let E, denote the fiber of E over x.
We let fu:I'(TM)—>T(T'M) be the continuous linear mapping given
by fx(2) = Dfozof 1. We will consider I'(T'M) as a Banach space, with
any norm which induces its topology.

LemMA 1. If f is an Anosov diffeomorphism, then fx—id is an iso-
morphism.

REMARK. The converse is also true, but will not be proved here.

Proor. By the hypothesis, there exists a splitting of T°(M/) into a
continuous Whitney sum 7'(M)=E*+ E*, invariant under Df, such
that Df: E*—E?® is contracting and Df: E*—E* is expanding. Let
fo =f*l T'(E?) and f =f*| T'(E%). Then there exists C>0, 0<A <1 such
that for all m&Z+,

Ifell <ex™,  |Ifell <A™

It follows that fo—id and f3'—id are automorphisms of I'(E*) and
T'(E%), resp. In fact,
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(h—id) == 37,

=0

(=i = - _Zof;’l

Hence, f,—id = —f,(fz'—id) is an automorphism. The lemma follows
immediately.
Let A: DXCXD—CXC be given by A (g1, k, g2) = (hog1, gsoh).
LemMMA 2. A is once differentiable in its second variable and its
“partial derivative,”

Dyd: DXTCXD—TCXTC
s continuous in all variables. Moreover poL is an isomorphism, where
L= DyA| (f X (TC)ia X f): (TC)ia—> (TC)s X (TC);
and p denotes the projection of (T C)y X (T C)son (TC)s X (TC)s/diagonal.

Proor. The first sentence follows from the methods of [1]. Also by
the methods of [1], we may make the identifications ((T'C)ia=T(T M)
and (TC);=T(f*TM). With respect to these identifications L is
given by

z2—(z0f, Df o 2).

Let S: (T(f*T M) XT(f*T M))/diagonal—T' (T M) be the isomorphism
induced by (s, t)—tof~!—sof~1. Then

SopoL = fx—id.

Hence, the second sentence follows from Lemma 1, completing the
proof of Lemma 2.

By Lemma 2 and a suitable version of the implicit function theo-
rem, there exists a neighborhood V; of f in D and a neighborhood U,
of idy in C such that for all g, g.&EV there exists a unique
h=u(g1, g2) E Ui such that

A(gh h; g2) € diagonal
ie.,
(1) hogi= g0k

and such that (g, g.)—u(g1, g) is continuous.

Let U. be a neighborhood of idy in Uy such that for all ky, haE U,
hiohs € Uy and let V be a neighborhood of f in Vi such that for all g4,
©EV, u(g, g2) EUs. Forall g€V, set k(g) =u(g, f) and b~(g) =u(f, g).
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Setting h=h(g), h~=h"(g), we have hg=fh and h~f=gh~. Hence
h~hg=h"fh=gh~h and hh—f=hgh—=fhh~. Since (1) has a wunique
solution A& Us for gy, g, & V4, it follows that Ah—=h"h=idy. Hence
k is a homeomorphism, so the theorem follows with U= UyN\H.
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PART II. FLOWS

II.1. Introduction to flows. We shift now our survey to the case
of the group G=R, the real numbers, acting on a manifold M, which
for simplicity we will assume compact most of the time. Thus we
are studying a 1-parameter group of diffeomorphisms, ¢: R—Diff (M)
with ¢o: M—M the identity and ¢, =¢ss. We will call this set of
data, or ¢, simply a flow. A flow ¢;: M— M defines (or generates)
a tangent vector field on M; i.e., for each xE M define X (x) ET.(M)
by

(1.1) du()/dt) im0 = X ().

Thus X (x) is a tangent vector at x on M and ¢.(x) is the solution of
the ordinary differential equation (1.1) with initial condition ¢o(x) =x.
Then the orbit (of ¢) through x, t—¢.(x) coincides with the solution
of the first order, autonomous (i.e., X(x) doesn’t depend on i),
ordinary differential equation (1.1).

Conversely, given an ordinary differential equation, simple meth-
ods reduce it to the first order autonomous case and thus one obtains
the situation in (1.1) with X(x) given. The fundamental existence
theorems of ordinary differential equations (see [25], [56]) yield a
solution ¢.(x) such that ¢o(x) =x, at least locally, i.e., for It <e.
Furthermore these local solutions may be pieced together (see [56])
and frequently this leads to a flow on M. Certainly if M is compact,
every (smooth of course) tangent vector field defines a unique flow
in this way. In the noncompact case one may change the vector field
by a scalar factor to obtain one which defines a global flow. We will
consider here only the case where ¢;: M— M is defined for all £, or an
action of R on M, i.e., a flow.

Most of Part II is the carrying over of Part I to this slightly more
complicated case. We will emphasize some of the special features and
new interesting problems encountered in this 1-parameter case.

There are three possible types of orbits of a flow ¢.: M— M. First



796 S. SMALE [November

% is fixed point of the flow if ¢:(x) =x all tER. A fixed point x can also
be characterized as a zero of the vector field defined by ¢. Secondly
a closed orbit of ¢,: M—M is the orbit through some x with ¢.(x) =x
some t%0. Usually a closed orbit is taken to mean exclusion of the
fixed point case so there is a minimum period £,>0 such that
¢4,(x) =x. Finally if t—¢,(x) is injective, then the orbit through x is
not one of the above types and could be called an ordinary orbit.

In topologizing actions of R we assume M is compact. Then the
flows as we saw above correspond precisely to tangent vector fields
on M. The Cr, r>0, vector fields on M form a linear space and with
a C" norm, r<w, a Banach space which we denote by x(M).
A generic property of flows will be a property true for a Baire set in
x(M). The most obvious generic property is that the set of zeros of
X Ex(M) is finite [114].

Proceeding as in §1.1 we look for a suitable equivalence between
two flows ¢, and ¢, on M. A conjugacy between ¢, and ¢ is a homeo-
morphism h: M—M such that h¢.(x) =¢.(hx). Such an equivalence
relation preserves the minimum period of a periodic orbit and thus a
conjugacy class will not in general be invariant under perturbation.
This implies the need of a weaker notion of equivalence. We say that
flows ¢, Y. are topologically equivalent if there is a homeomorphism of
M sending orbits of ¢, into orbits of Y,. If perturbations in x(M) do
not change the topological equivalence class of X &Ex (M), then X is
called structurally stable. This concept was introduced in 1937 [6] by
Andronov and Pontrjagin for ordinary differential equations on the
2-dimensional disk. On compact 2-dimensional manifolds, the struc-
turally stable flows form a dense open set, simply characterized
(Peixoto [84], see also §I1.2). However in every dimension higher
than three there exist compact manifolds on which the structurally
stable flows are not dense [116] (see also [87]). Parallel to Part I this
leads to a weakening of topological equivalence as follows.

For a flow ¢; on M, G. D. Birkhoff [15] has defined x &M to be a
wandering point if there is some neighborhood U of x in M with
WUit1>6 0:(U))NU = for some £,>0.

The nonwandering points (those which are not wandering) form a-
closed invariant subset of M denoted by Q=Q(¢:). We will say that
flows ¢, . are topologically equivalent on Q if there is an orbit preserv-
ing homeomorphism %: Q(¢:)—QY:). Then ¢, is Q-stable if sufficiently
small perturbations (measured in terms of the corresponding
X Ex(M) of course) are topologically equivalent on © to ¢,. It is an
important problem to discover whether Q-stable flows are dense in

x ().
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We end this section by giving a direct relation between the flows
discussed here and the diffeomorphism questions of Part I, [114].

A compact submanifold 2 of codimension one of a compact mani-
fold M is called a cross-section for a flow ¢, on M if 2 intersects every
orbit, has transversal intersection with the flow and whenever xEZ,
¢:(x) EZ for some £>0. Then ¢; induces a diffeomorphism f: Z—2
by f(x) =¢,(x) where £, is the first >0 with ¢,(x) € (see [114] for
more details). The topological equivalence class of ¢; is determined
by the topological conjugacy class of f. Orbits of f are in a natural 1-1
correspondence with those of ¢; by { f'"(x)]mEZ }—){dn(x)ltGR},
each x&Z. Compact orbits are preserved under this correspondence;
thus periodic points of f correspond to closed orbits of ¢, There can
be no fixed points of ¢, when there is a cross-section. Cross-sections
were used by Poincaré and Birkhoff (see, e.g., [19]).

There is a converse construction of some importance. Given a dif-
feomorphism f of a (compact) manifold 2 we will construct a flow,
canonically, on a manifold M, of one dimension higher, called the
suspension of f. This goes as follows. Let a: X R—Z X R be defined
by a(x, u)=(f(x), #+1). Then {a”‘} =7 operates freely on TXR
and the orbit space is a manifold M,. Furthermore the flow ¢;: ZXR
—2 X R defined by ¢.(x, u) = (x, u-+¢) induces a flow ¢; on M, which
is our suspension of f. Clearly M, will have a cross-section Z,
=7 (2 X0)C M where 7: ZX R— M, is the quotient map. It is easy to
check that the associated diffeomorphism of (¢, Zo), fo: Zo—2 is
differentiably conjugate to our initial f: Z—Z. Furthermore if an arbi-
trary flow ¢,: M—2Z has a cross-section f: Z—2 whose suspension is
¢! : My—M,, then ¢, and ¢/ are equivalent by an orbit preserving
homeomorphism.

This notion of suspension is useful because it allows one immedi-
ately to transfer all the examples in Part I, i.e., the diffeomorphisms
of §I.2, Anosov diffeomorphisms as well as those of §§1.5 and 1.6,
to examples of flows. From the above remarks, all the stability prop-
erties of the diffeomorphism examples are kept by the suspended
flows.

I1.2. The simplest examples of Q-stable flows. We will say that
a fixed point x of the flow ¢;: M— M is hyperbolic if x is a hyperbolic
fixed point of the diffeomorphism ¢: M— M. An alternate way of
saying this is as follows: If x is a fixed point of the flow ¢;: M—M,
then the derivative D¢.(x): T,(M)—T,(M) defines a linear repre-
sentation of the real line and so can be written in the form D¢, (x)
=e*4 where A4 is a linear endomorphism of T,(M). Then x is hyper-
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bolic if and only if none of the eigenvalues of 4 have real part equal
to zero.

(2.1) ProrosiTION. If x is @ hyperbolic fixed point for the flow ¢,
the stable manifold W*(x) of x relative to ¢y is invariant under ¢, for
every t and is contracting for every t>0.

Then We(x) will be called the stable manifold of x for the flow ¢..
One may apply 1.(2.1) to obtain properties of W*(x).

Now suppose that x & M is in a closed orbit vy of the flow ¢;: M— M.
There is a submanifold V of codimension one passing through x and
transversal to . Then V serves as a local version of the cross-section
of §11.1, defining a local diffeomorphism f: U—V, f(x) =x, where U
is a neighborhood of x in V. We say that v is a hyperbolic closed orbit
of ¢, whenever x is a hyperbolic fixed point of f. It is easily checked
that this definition is independent of the choices x&y and V (see
[114]). The local stable manifold Wi,(x, f) of x for f in U defines the
stable manifold W*(y) of ¥ by W*(v) =Uicr ¢«(Wie(x, f)). Then W*(y)
is a 1-1 immersed cell bundle over S’ (either a cylinder R¥X S, or a
generalized Mobius band). For more details see [114].

The unstable manifolds of hyperbolic fixed points and closed orbits
of ¢, are defined as the stable manifolds of ¥, =¢_..

For the suspension of a toral diffeomorphism (§1.3), the closed
orbits are hyperbolic and dense in M; but hyperbolic fixed points of
any flow are necessarily isolated fixed points.

We now describe the analogue of the diffeomorphisms of §1.2 as
flows ¢p;: M—M, M compact, which satisfy

(2.2) (1) Q(¢¢) is the union of a finite number of fixed points

X1, *++, ¥» and a finite number of closed orbits v,
©+ Y of bu
(2) The x;, v; are all hyperbolic.
(3) The stable manifolds and unstable manifolds of the x;,
B; intersect each other only transversally.

(2.3) TaEOREM [109]. Suppose the flow ¢,: M—M satisfies (2.2).
Then (a) Each stable manifold Wy of the x; and v; is imbedded and
M=Upt Wi (disjoint union).

(b) The closure of one Wj is the union of certain Wi. Let Wi s Wi
if Wi is in the closure of Wy. Then = is a partial ordering. If W; = W3
then dim Wi<dim Wj,

(c) One has the following Morse inequalities:
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Mog BOy
My — My = By — By,

..............

n n
2 (—1)MMy = 2 (—1)*By.
k=0 k=m0
Here B; is the sth betti number coefficients Z,, and M;=a;+b;
+b;41 where @; is the number of x; with dimension W¢*(x;) =< and b, is
the number of v; with dimension We*(y;) =i+1.
One can see that 11.(2.3) is quite analogous to 1.(2.3). There are a
couple of special features in the present situation however. For ex-
ample

(2.4) TrEOREM (PEIXOTO [84]). If dim M =2, then the flow ¢, satis-
fies (2.2) if and only if it s structurally stable.

In this case the corresponding X Ex (M) form an open and dense
set.

This theorem gives a rough but quite good picture of flows on
compact 2-manifolds. It solves the first basic problem for 2-dimen-
sional flows.

A gradient flow ¢;: M—M on a compact Riemannian manifold is
defined by a Cr function f: M—R in the following way. The deriva-
tive Df(x) of f at x is a cotangent vector at ¥ and the Riemannian
metric converts this into a tangent vector X (x) = (grad f)(x) at «.
By the familiar procedure (§11.1) from X (x) we obtain our gradient
flow ¢t-

(2.5) TuEOREM [109], The flows on any given M satisfying (2.2)
contain an open and dense subset of all gradient flows.

Since every manifold possesses Riemannian metrics, we see that
from (2.5) every manifold exhibits flows satisfying (2.2). Recall the
existence of the diffeomorphisms of §1.2 was obtained in this way.
Theorem (2.5) gives the bridge between the usual Morse theory for
functions on manifolds and the work in this section. This even brings
the subject here close to handlebody theory in differential topology
and Poincaré duality on a manifold (this is the duality between the
stable and unstable manifolds of a gradient flow).

See [95] for one definitely nongradient type example satisfying
(2.2). See also [63], [97] for related papers.

I have just received a manuscript of K. Meyer [15] in which
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“energy functions” are constructed for the flows described in this
section.

I1.3. Anosov flows. Consider first 1-parameter groups of vector
space bundle automorphisms ¢,: E—E. Here E is a vector space bundle
and ¢ is a flow on E such that for each ¢, ¢;: E—E is a bundle auto-
morphism (i.e., linear on fibers). For example if ¥;: M— M is a flow
on a manifold, the derivatives at each ¢, ¢;=Dy,: T(M)—T(M),
define a 1-parameter group of vector space bundle automorphisms.
Assuming E is a Riemannian vector space bundle, say that such a
flow ¢;: E—E is contracting if there are constants ¢, A>0 such that
”¢z(v)” Sce™, all yEE, t>0.

Then ¢, is expanding if ¢_; is contracting and this is equivalent to
the existence of ¢;>0, u>0 such that ||¢.(@)|| Zcie*t all £>0, vEE
(compare §1.3).

An Anosov flow on a complete Riemannian manifold M (or just a
manifold in case M is compact) is a flow ¢, whose induced flow
D¢,: T(M)—T(M) on the tangent bundle is hyperbolic in the follow-
ing sense: The tangent bundle 7°(M) can be written as the Whitney
sum of 3 invariant subbundles, T'(M) = E,+ E;+ E; where on E*= E,,
¢; is expanding, on E*=FE,, ¢, is contracting and Ej is the 1-dimen-
sional bundle defined by differentiating ¢, with respect to .

Examples of Anosov flows are obtained readily from §1.3 and the
following easily proved proposition.

(3.1) ProPOSITION. If f: M—M is an Anosov diffeomorphism of a
compact manifold, then the suspension of f is an Anosov flow.

Another important class of examples of Anosov flows are the
geodesic flows on the tangent bundles of Riemannian manifolds of
negative (possibly varying) curvature (see [8], [13]).

(3.2) TarorEM (Anosov [9]). If ¢,: M—M is an Anosov flow of
a compact manifold 1t is structurally stable. Also if Q= M, the periodic
orbits will be dense. Finally if there is an (Lebesgue) invariant measure,
then ¢, is ergodic.

Applied to the geodesic flows on the tangent bundles of manifolds
M with negative curvature, (3.2) yields ergodicity, thus solving an
old problem. The constant negative curvature case as well as the
case of two dimensional M had been done earlier by G. Hedlund [42]
and E. Hopf [45], [46]. See also [34] and [64].

Again as in §1.3. there is the very important problem of finding all
Anosov flows on compact M (especially when Q= M). Progress on
this problem might contribute to the problem of what manifolds can
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have Riemannian metrics of negative curvature. Is this class bigger
than the class of manifolds which possess Riemannian metrics of
constant negative curvature? On this point see the problem of Calabi
in [51].

I1.4. On counting closed orbits. For counting the fixed points
(at least algebraically) of a diffeomorphism, the Lefschetz Trace
Formula provides a satisfactory method (see §1.4). This also applies
to periodic points, and for suspended flows, these methods will give
us some answers as to the nature of closed orbits. For flows in general,
it is an outstanding problem to find methods which will tell if there
are closed orbits and how many.

Seifert’s problem [105] is the best known question exemplifying
this lack of knowledge. That is, does a flow on S* (continuous or dif-
ferentiable) have a closed orbit or a fixed point? A related question
is: does X, a smooth vector field on D2X.S!, the 2-disk cross the
circle, transversal to the boundary, have a closed orbit or a singular
point? Related to these questions are papers of Fuller [32], and
A. Schwartz [104].

Thus an analogue of the zeta function for diffeomorphisms of §1.4
seems quite remote for flows. However we will mention a wild idea
in this direction.

Let I'=T'(¢,) be the set of closed orbits of the flow ¢.: M— M where
we will assume M to be compact and that there are no fixed points.
For y&T, define I(y) to be the period (minimal period, that is) of ¥,
i.e., () is the first >0 such that ¢;(x) =x for some xEvy. We will as-
sume then that the flow satisfies the generic property, {'yE I‘l Iv)= c}
is finite for each positive ¢ (that this is generic follows from I1.(5.6)).

Then define formally (another zeta function!) Z(s) to be the in-
finite product

z(s) = II II @ = [expin) -9,

YET k=0

The question is: does Z(s) have nice properties for any general class
of flows ¢? In this direction we consider the case that ¢ is the suspen-
sion of a diffeomorphism f: V—V where the zeta function (of Weil,
Artin-Mazur, §1.4) is rational.

(4.1) TureoreM. If the zeta function of f: V—V is rational, then
Zs(s) =Z(s) where ¢ is the suspension of f converges in a half-plane to
an analytic function of s, and has an analytic continuation to a mero-
morphic function. Furthermore the zeros and poles of this meromorphic
function can be computed explicitly in terms of those of ¢y.
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ProoF (LARGELY DUE TO NarasiMHAN). If K,=K.(f),

m=1,2,3, .- (asin §1.4) denotes the number of periodic points of
f of minimum period m, we get directly from the definition of Z(s)

Z(s) = ﬁ ﬁ (1 — g mGHR)Km/m,

m=1 k=1

Let

W) = IT (1 — emyiaim,

Then

* 1 1
—log W(s) = D>, — Knlog <T )
— e‘m&

m=1 m

It

—_— Kme-—mra
m,rz1 mr

1
= Z — Z K.
nzl n m/n
Assuming at first that the zeta function ¢(!) of f is of the form
@ =0—=N\)"Y, we have I.(4.1), (4.8)) D mm Km=A" Thus
—log W(s)= 2. (1/n)(\/e*)"»= —log(1—N/e?) or W(s)=1—M\/e* and

Zi) = [Iws+ & =] (1 —r/e+h).
k=0 k=0

Then we can see that Z(s) is entire because it is the uniform limit,
in every compact set, of entire functions. Incidentally one sees from the
explicit form of Z(s), a functional equation Z(s+1)=2Z(s)e*/(e*—N\).
Finally the zeros are clearly the solutions of est#=), =0, 1, 2, - - -
or s+k=log \+2mwin, nEZ.

In the general case we have ¢(t)= Hi,j(l —uit) /(1 —=Nit)
and D omim Kn= D i Ni— 2 ;. Thus we obtain —log W(s)
=—log Jl.;(1—N\/e)(1—pi/e) 1, so Z(s)= [1:i ILimo(1 —Ni/ert)
«(1 —pj/es+*)—1, The zeros are of the form s=1og N\;+27ni—Fk and the
poles s=log u;+2mwni—k (distinguish the ¢’s!). This proves (4.1).

The following question then arises. Suppose ¢:: M— M is the sus-
pension of f as in (4.1) with {; rational and f satisfying Axioms A and
B of §1.6. Suppose even that M is the 2-dimensional toral diffeo-
morphism. Now let ¢;: M— M be close to ¢.. Does Zy,(s) have a mero-
morphic continuation to all of C? An affirmative answer would be
roughly necessary and sufficient condition for Z(s) to be useful. I must
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admit a positive answer would be a little shocking! A way of looking
at this problem is the following. The canonical cross-section 2 for ¢;
is also a cross-section for ¥; and the time of first return for ¢, is de-
fined by a smooth function p: Z— R+ (R* the positive reals) which
will be close to the constant function 1. There is a natural 1-1 cor-
respondence y—y’, I'>T" from the set of closed orbits of ¢; to those
of Y; using Q-stability.

Let A=I(¥), s0 N\y=2cevnzp) and —log Wi(s)
= Y ,.(1/r)e> s where Wi(s) corresponds to the W(s) of the previ-
ous proof. Is there sufficient regularity in the N\, to continue W,
meromorphically?

There are two other remarks we wish to make about Z(s). First if
¢. is the geodesic flow for a 2-manifold of constant negative curvature,
then Z(s) is meromorphic. In this case it is precisely the Selberg zeta
function [106], which Selberg defined directly in terms of SL(2, R)
and a certain uniform discrete subgroup I'. Selberg proved that it is
meromorphic in this case and found its zeros and poles as well. Sinai
and Langlands pointed out to me this interpretation of the Selberg
zeta function and this motivated my using it here.

Finally we pose the question, how generally do flows have the I(y)
growing slowly enough so that Z(s) has a half plane of convergence?

I1.5. Spectral decomposition of flows. One can extend Axioms A
and B of §1.6 to flows. This goes as follows. For flows ¢; on compact
manifolds M, we have

(5.1) Axiom A’. The fixed points of ¢: are each hyperbolic. The non-
wandering points Q consist of this finite set of fixed points F and the
closure A of the closed orbits; A and F are disjoint. Finally the derived
Slow restricted to the tangent bundle restricted to A, Dy Ta(M)—T 4 (M)
s hyperbolic (defined analogously to the Anosov flow in §11.3).

Topologically transitive for a flow again means that there is a
dense orbit.

(5.2) THEOREM (SPECTRAL DECOMPOSITION). If ¢p:: M— M satisfies
Axiom A’, then Q can be written uniquely as the disjoint union W\JQ,
U -« Uy, where each Q; is closed, invariant and each ¢i: Q:—Q; 1s
topologically transitive.

(5.3) CororrAarY. M=U}, W*(Q,) (disjoint union, canonically)
where each W*(Q;) = {x &€ M| ¢.(x) >},

(5.4) Axiom B'. Conditions and notations as above, if W*(Q.)
NW*(Q,) #= &, then there exist periodic orbits (or fixed poinis) v in
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Q;, o in Q; such that W*(y) and W*(c) have a point of transversal intersec-
tion.

The following seems to be a theorem although I haven’t written
out the details.

(5.5) If ¢s: M—M saiisfies Axioms A’ and B’ then ¢, is Q-stable.
One also obtains the openness, filiration, and partial ordering as in §1.6.

The approximation theorems are quite parallel to those referred
to in §1.6 with the same references in fact.

(5.6) THEOREM [55] AND [114]. The property of flows that the fixed
points x; and closed orbits v; are all hyperbolic is generic. Furthermore
generically, the stable and unstable manifolds of the x;, v; intersect each
other only transversally.

(5.7) TreoreEM (PucH [91]). In the Banach space of C' vector fields
(or flows), there is a Baire set with the property that the fixed points and
closed orbits are dense in Q.

If ¢;: M— M, ¢.: V—V there is defined naturally the product flow
¢ XYi: MX V—MX V. Note that the product of two (or more) flows
containing closed orbits of positive period will contain an invariant
torus which will make this product not Q-stable. For gradient flows
(nondegenerate) the situation is different and simpler; the product is
in this case Q-stable.

Note that one obtains the example showing that structurally
stable flows are not dense, by simply suspending the example for dif-
feomorphisms.

All the material in §1.5 about homoclinic points and symbolic flows
can be suspended to obtain similar results on flows. As mentioned
there, I first ran into this phenomena in that form, i.e., in trying to
understand Van der Pol’s equation (with forcing term). See also
[107] for these questions discussed in the flow framework.

PART III. MORE ON FLOWS

II1.1. Flows with conditions imposed. In this section, we discuss
some of the problems encountered in attempting to carry over Parts
I and II to flows which satisfy certain constraints, e.g., of the type
occurring in classical mechanics. Essentially nothing has been done in
this direction, so we just mention some background material, related
recent results, and some problems.

The main class of lows, beyond the unrestricted ones we have been
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discussing up to this point, are the Hamiltonian flows. Abstractly
speaking, a Hamiltonian flow is defined on a symplectic manifold,
and this proceeds as follows.

A symplectic structure on a manifold M is a 2-form 0 defined on M
such that df=0, and at each point of M, 8 is nondegenerate; nonde-
generacy of 6 at x& M means that the map Q: T.(M)—T5(M) is an
isomorphism from the tangent space at x to its dual where Q(X)(Y)
=0(X, Y), X, YET (M) (for a complete discussion of this material,
see [1], [123]). We then say that M is a symplectic manifold. It fol-
lows that dim M is even. Thus on a symplectic manifold, there is a
1-1 correspondence between 1-forms and vector fields.

Now if H: M—R is a differentiable function (a “Hamiltonian”
function), its derivative DH (x) €T (M) defines a 1-form, which via
Q we may consider as a vector field, say Xz. The flow ¢; generated by
Xpu (at least locally) is called the Hamiltonian flow defined by H.
It can be checked that ¢; leaves @ invariant. In fact, by reasons con-
verse to the above, it is important to consider directly those flows
(which we will again call Hamiltonian) ¢;, say, defined for all £, on a
symplectic manifold preserving the symplectic form. Then the nat-
ural global problem for Hamiltonian flows becomes

(1.1) ProBLEM. Given a symplectic manifold M, find a Baire set
® of all flows which preserve the symplectic form, so that if ¢; is in ®,
one can describe the global orbit structure of ¢..

If M is compact, one may conveniently consider the Hamiltonian
flows 3C as a subspace of all vector fields, x(M) with the Cr topology.

Note that a Hamiltonian flow, ¢;, leaves a volume on M invariant,
namely the form obtained by wedging the symplectic form 8 with it-
self n=% dim M times. Thus it follows that in case M is compact,
that the set of nonwandering points, @ is equal to all of M.

One has a similar problem, also directly motivated by classical
mechanics, for a single diffeomorphism.

(1.2) ProBLEM. What is the orbit structure of some Baire set of
diffeomorphisms f of a compact symplectic manifold which preserve
the symplectic 2-form?

Of course in studying these problems, one is only permitted per-
turbations of f to f/ which also keep 8 invariant. The first (and still
unsolved) problem that one encounters here is to understand a local
problem, the orbit structure in the neighborhood of a fixed point x
of f. The difficulty is that the symplectic condition on f means that
for the derivative D(x), hyperbolicity is not a generic property. For
example, if dim M=2, f preserves a volume and Df(x): T.(M)
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—»T,(M) has determinant 1. One may classify these linear transfor-
mations into the hyperbolic and elliptic types. The hyperbolic is the
one already discussed with eigenvalues A>1 and 1/A. The elliptic
case is a nontrivial rotation of the plane. In the elliptic case in gen-
eral, there exist no coordinates in the neighborhood of & in which f
becomes linear, and only recently in this local 2-dimensional problem
has one even begun to understand what is going on.

Birkhoff, e.g. [18], had believed that volume preserving trans-
formations of compact 2-manifolds were ergodic (as well as Hamil-
tonian transformations more generally) “in the general case” and
based much of his work on this hypothesis. (Recall ergodic means
there are no invariant sets of positive measure with measure less than
that of M.) Through the work of Kolmogoroff, Arnold, Moser, [52],
[10], [71], we know now that this is not the case. If x is an elliptic
fixed point of C* f: M2—M?, then generically, there is an invariant
circle in every neighborhood of x and thus f cannot be ergodic [70].

In the 2n-dimensional analogous problem there is an invariant
n-dimensional torus in any neighborhood of x and the diffeomorphism
is not ergodic. However one still has not yet a topological description
in the neighborhood of an elliptic fixed point of a Hamiltonian diffeo-
morphism and thus it seems especially difficult to know how to pro-
ceed as in the first parts of the survey. Furthermore, the recent work
of Arnold and Moser on the Hamiltonian case is still fairly local; the
global Hamiltonian picture seems remote. We remark, though, that
the examples of geodesic flows on manifolds of negative curvature are
Hamiltonian and in this case, (§11.3), the flow is ergodic and struc-
turally stable (on each level surface of the Hamiltonian).

We make three last comments on the Hamiltonian problem. First
an elliptic point of a Hamiltonian diffeomorphism, say in 2 dimen-
sions, where the derivative is a rational rotation, is degenerate. This
is one reason why one must work with Baire sets of Hamiltonian dif-
feomorphisms, not open dense sets. Similarly one cannot expect these
diffeomorphisms to be Q-stable, as in Part I. Secondly, we remark
that Pugh has shown that his closing lemma applies to prove the
periodic orbits are dense in the compact Hamiltonian case [93].
Lastly it should be said that in practice, or in engineering, the dif-
ferential equations, because of friction, are no longer Hamiltonian
and could be closer to those described in Parts I and II. In this con-
nection see [85].

After the Hamiltonian problems, the next most interesting case to
consider might well be volume preserving diffeomorphisms. These
coincide in dimension two with the Hamiltonian ones.
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Volume preserving diffeomorphisms have not been studied from
our point of view (although, see [122]). For dim M>2, however,
none of the Hamiltonian objections apply and in fact the hyperbolic
linear volume preserving maps are dense and open among all volume
preserving linear maps; very possibly in the higher dimensional case,
volume preserving diffeomorphisms might be amenable to study by
the methods of Part I. A first question could be to prove 1.(6.7) for
volume preserving diffeomorphisms.

For every volume preserving diffeomorphism f of a compact mani-
fold, Q(f) = M. Presumably, Pugh’s method would show the periodic
points are dense. Is f ergodic, a generic property in this context?
Oxtoby and Ulam [78] prove such an ergodicity theorem for homeo-
morphisms.

One can also ask whether the program of Parts I and II could be
carried out for ordinary differential equations of higher order, say
second order to begin with; see [56], [123] for a coordinate free defi-
nition of 2nd order differential equations. This hasn’t been investi-
gated as far as I know. The same applies to diffeomorphisms or flows
of infinite dimensional manifolds.

Holomorphic diffeomorphisms of a complex manifold are much
more rigid, but I think that the orbit structure is not generally under-
stood. G. Julia’s prize memoir [50] is related to this subject. It con-
cerns holomorphic endomorphisms of the Riemann sphere.

II1.2. Some other work on flows. Here we mainly remark on a
couple of recent results on flows which are not so directly related to
the preceding.

The question of existence for minimal sets poses interesting prob-
lems to the global analyst. A compact manifold (or even space) M
is a minimal set for the flow ¢,: M— M if there is no proper nonempty
closed invariant subspace of M. Gottschalk [35] has given a survey
of this subject. A main problem is: what M can be the minimal set for
some flow? It is not known if the 3-sphere can be a minimal set.

A number of new examples of minimal flows are constructed from
Lie groups in [12a]. See also [29] for examples on S»X .St

An important recent result is that of A. Schwartz [102] which
generalizes both the Poincaré-Bendixson theorem for plane regions
and Denjoy’s theory of C? flows on the torus. The Schwartz theorem
says that for any C? flow on a 2-manifold, any (compact) minimal
set is either a point, a closed orbit, or a 2-torus. Among other applica-
tions of Schwartz’s methods, R. Sacksteder has shown that if G is a
finitely generated, finitely presented, discrete group G acting C?
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freely on the circle, then the action is topologically conjugate to a
group of rotations. See also [99]. Here acting freely means no
¢y: S1—>S1, g&EQG, has a fixed point.

There has been recently also interesting work on the subject of
distal actions which we do not go into. Here ¢;: M— M, compact M,
is distal, if in some metric, for any x, y& M, x#y, there is an € such
that d(¢:(x), ¢:(y)) >e all tEG. See for example [28], [33], [67].

PART IV. OTHER LIE GROUPS

IV.1. Action of an abelian Lie group. We consider briefly here the
question of an abelian Lie group G acting on a manifold when G is
more complicated than Z or R.

Recall first that an action of a Lie group G on a manifold is a
homomorphism ¢: G—Diff (M) such that the induced map ®: GX M
— M defined by ®(g, m) =¢,(m) is C*. The orbit O, through x&E M of
such an action is the image of the map p,: G—M defined by p.(g)
=@4(x). The isotropy group H, of the action at x is the set of elements
EEG such that ¢u(x) =x. Then H, is a closed subgroup of G and G/H,
is a homogeneous space of G. Induced from p, is a 1-1 immersion
¢s: G/H,— M. Finally we remark that the x orbit O, refers to p,,
¢, G/H; or ¢.(G/H,) at various times. If there is danger of confusion
we will try to be more explicit.

A fixed point of the action is an orbit consisting of a single point.
Actions ¢y, ¥, are conjugate if there is a homeomorphism s: M—M
such that ¢,(hx) =h(Y,(x)) for all g&G, x&E M.

Returning to the abelian case, suppose G is isomorphic to Z4Z.
One may choose generators f, gEDiff (M) of G, so fg=gf, and thus
one is equivalently studying a pair of commuting diffeomorphisms.
More generally one may study two commuting differentiable maps
and actually the most studied of such problems perhaps has been the
existence of a common fixed point for two commuting maps of the
unit interval I into itself. Very recently a counterexample has been
found to this problem by P. Huneke [49] and independently
W. Boyce [22]. They each construct continuous maps f, g: I—I, with
fg=gf and such that there is no x €I with f(x) =x =g(x). These maps
are not C! and thus the differentiable version of this problem remains
open. In this direction, A. Schwartz [103] has the strongest result:
If f and g are C! maps, I—I, there is a fixed point of one which is
periodic for the other.

Going back to the case of two commuting diffeomorphisms
g, f: M—M, observe g is in the centralizer Z(f) of f, i.e., Z(f)
= {gEDiff(M)|gf=fg}. Thus a first question in such a study could
well be
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(1.1) ProBLEM. What can be said about Z(f) for fEDiff(M)?
Under what conditions on f is dim Z(f) < «? Is Z(f) = {f|m&Z}
a generic property?

Work of N. Kopell suggests that this last question may have an
affirmative answer. Since a significant class of Q-stable diffeomor-
phisms (§1.2) are a finite union of contractions up to a finite power,
it is important to know Z(f) when f is a contraction.

(1.2) TaeoreM (KoPELL [53]). Suppose Cf: W—W is a contrac-
tion. Thus at the unique fixed point x, derivative Df (x): To(W)—T(W)
s @ linear contraction. Then Z(f) = { [~ Diff(W)|gf =fg, g& C°°} s a
finite dimensional Lie group. If f is linear, with a further nondegen-
eracy condition on the eigenvalues, then g is linear. Finally for a dense
open set of diffeomorphisms f satisfying 1.(2.2), Z(f) = {f"|mEZ]}.

In the proof of the structural stability of an Anosov diffeomor-
phism (see the Appendix of Part I), one obtains at the same time
that its centralizer is discrete, even in the group of homeomorphisms
of M. Adler and Palais [5] have actually computed this centralizer
for the toral diffeomorphisms. It would seem at least a reasonable
conjecture that an open dense set of diffeomorphisms satisfying
Axioms A and B (§1.6) have centralizer Z(f) = {f"|m&Z}.

Kopell [53] has studied commuting diffeomorphisms of the circle
in more detail. Here, at least among those with periodic points, she
has found a dense set of actions of Z-+Z for which the orbit structure
can be understood. She also gives an example of commuting diffeo-
morphisms f, g of S’ with the following property: g is the identity on
an open set and for C’ approximations f’, g’ of f, g such that f'g’ =g'f’,
g’ must also be the identity on some open set.

Further results on abelian actions are related to the question of
degeneracy of some orbits when R* acts on a given manifold. By tak-
ing generators, an action of R* on M corresponds to a set of k tangent
vector fields on M which commute, or equivalently their bracket is
zero. In this direction Lima [60] showed that if R? acts on a compact
2-manifold of nonzero Euler characteristic, there must be a fixed
point or, equivalently, a common zero of the two generating vector
fields. In a further paper [59] he showed that two commuting vector
fields on S* are dependent at some point (see also Novikov-Arnold
[76]). Extensions of this last theorem have been made to actions of
R* on certain M*+! by Rosenberg, and Sacksteder [98], [100]. While
on this subject it seems worthwhile to mention that closely related is
the result of Novikov [77] who has shown that every foliation of di-
mension 2 on .S® has a compact leaf. An account of the basic results in
foliation theory is in Haefliger [41].
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Recently Adler and McAndrew [4] have shown that the topologi-
cal entropy of a Chebyshev polynomial is positive.

There has not been much work on actions of solvable or nilpotent
Lie groups along the line of this section.

IV.2. The semisimple case. Here we make a few comments on the
problem of studying the action of a semisimple group G on a (com-
pact) manifold. Discussions with R. Palais have been helpful here.

There is a vast literature on the subject of a Lie group G acting on
a manifold M when G is compact, acts transitively, or acts linearly.
The reader can refer to [20], [66] for the case of compact G. We only
remark that Palais [80] (see also [81]) has shown a strong form of
structural stability for compact actions. Namely if an action ¢, is
close to ¢,, ¢: G—Diff (M), G compact, these actions are conjugate by
a diffeomorphism A& Diff (M). Thus ¢,(hx) =hy,(x), all gEG. In this
case we say ¢ is rigid.

One systematic treatment of the transitive case is [27]. Another
aspect of this case is [126].

If G acting on M is semisimple, but neither compact, nor acting
transitively, nor linearly, there seems to be essentially no literature,
at least that I know of. On the other hand, it would seem worthwhile
to make efforts in this direction. These efforts could produce unifying
theorems, shed light on the above three special cases, or be useful in
geometry or physics. One possibility might be to extend some of the
results of Parts I and II. We limit ourselves to a few remarks.

In the first place, the evidence is that the richness of actions of a
noncompact semisimple Lie group will lie somewhere between the
abelian case (extremely rich, e.g., G=R) and the compact group case
(few actions, i.e., G acts rigidly as mentioned above). We will try to
make this point clearer.

In the linear theory, or representation theory, the semisimple case
is close to the case of compact groups in that representations (finite
dimensional) are rigid. This contrasts to the abelian case where even
one dimensional representations of R (up to equivalence) are param-
eterized by R.

This motivated the speculation that if ¢: G—Diff (M) is an action
of semisimple G with fixed point x& M, the representation g—Ddg,:
T,(M)—T,(M) determines the orbit structure of ¢ in a neighborhood
of x. R. Hermann [44] showed this to be true formally, while Guil-
lemin and Sternberg [37] show that this is actually true in the case of
an analytic (real) action. On the other hand Guillemin and Sternberg
[37] give a counterexample in the C* case for G=SL(2, R). This
situation, however, is still not yet well understood.
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One might ask whether any action of a semisimple G on a compact
manifold is rigid. This is false as the following simple example shows.
Let G=SL(2, R) act on the unit tangent bundle T of a 2-manifold
M2 of genus greater than one by dividing out a uniform discrete sub-
group I' from G. These actions correspond to different complex struc-
tures on M? and thus one gets a continuous family of such actions.
One sees this by considering M as the double coset space I'\G/K
where G/K is the complex upper half plane. See also for example
[126].

This does not exclude the possibility of a number of cases of non-
compact semisimple G acting rigidly on compact M. Here is one such
case. G=SL(n+1, R) acts transitively on P»(R) using homogeneous
coordinates and in fact SL(n+1, R) has no other homogeneous spaces
of dimension less than #+41. Thus there is at most one action, transi-
tive or otherwise, of SL(z+1, R) on connected M if the dimension of
M is less than N1, so of course this action is rigid and M must be
Pr(R) (or a point!).

This suggests that semisimple G acting on M of much lower dimen-
sion might be fairly amenable to study. The situation is akin to the
work of Hsiang and Hsiang on compact G [48].

The work of Hermann [43] and others on the (equivariant) com-
pactification of homogeneous spaces may be interpreted as studying
the action of a semisimple G in the neighborhood of certain noncom-
pact orbits.

I have just received a manuscript [47] of W. Y. Hsiang which is
related to the material of this section.

IV.3. Final miscellany. We end by making some final remarks on
the action of a Lie group G. The notion of induced representation
which has proved useful in the linear theory has an analogue in the
general case which we describe now. This construction generalizes
the suspended action of §11.1. Suppose then H is a closed subgroup
of a Lie group G and ¢: H—Diff (M) is an action of H. Define an action
Y: H-DIiff (M XG) by yu(m, g) = (dn(m), gh) and let m: MXG—E
be the projection onto the orbit space. One obtains the following dia-
gram where f is induced by 7e¢.

Ta

MXG— G
) }
E — G/H

Here E is a manifold and f: E—G/H is a bundle over G/H, Cartan’s
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construction in [23]. The action ¢ of G on M XG defined by o, (m, g)
= (m, g’ g) induces an action 7=7(¢) of G on E which we might call
the induced action of ¢. This action 7: G—DIiff(E) is fiber preserving
with respect to f and commutes with translation on the base. 7 re-
stricted to H leaves f~1(¢H) invariant where it is equivalent to the
original action ¢.

If G=R, H=_2Z, then 7 is the construction of the suspension of a
generator of Z as in §11.1. If M is compact so is E and if ¢ is linear,
M a vector space, then E is a vector space bundle and the action of G
on sections is Mackey’s induced representation.

We saw in Parts I and II that the concept of nonwandering points
played a central role. A most important task would be to generalize
this idea to a more general group G and to formulate some of the
conditions say of §§1.2, 1.3, 1.6 for the case of a general Lie group, or
even abelian, or semisimple G.

Palais in [79] considers a class of actions on noncompact groups
which have many properties of compact transformation groups.
These actions are quite restrictive in that the isotropy group is always
compact and the manifold must be noncompact. These actions, how-
ever, resemble G=Z acting on M —Q.

Suppose now that ¢: G—Diff (M) is an action with a fixed point
xE M. Then the map ¢: G—Aut(T.(M)) is a linear representation
of G, where ¢(g) =Dg¢,(x) is the linear automorphism of T,(M) de-
fined by the derivative of ¢, at x.

(3.1) ProBLEM. To what extent (generically) does this representa-
tion determine the action of G in a neighborhood of x, say up to
conjugacy.

This is a basic local question. In earlier sections we saw aspects of
it, starting with the stable manifold theorems, §1.2, in Sternberg [121]
and Guillemin-Sternberg [37]. In general, the question is very far
from being answered. Very likely, the higher derivatives will play a
basic role for some groups.

Suppose more generally that O=0, is the compact orbit of some
x&EM of the action ¢: G—Diff(M). Thus G—O0,, g—¢,(x) is the
orbit map with isotropy group H,CG acting on M leaving x fixed.
The derivative De¢,: To(M)—To(M) defines a structure of a homo-
geneous vector space bundle (in the sense of [21]) on the restriction of
the tangent bundle of M restricted to O. We may generalize (3.1) with

(3.2) ProBLEM. To what extent does the group of bundle auto-
morphisms D¢,: To(M)—To(M) determine the action of G in a
neighborhood of O?

Here of course (3.1) is the case O is a single point. For the notion
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of equivalence in (3.2), one might take orbit preserving homeomor-
phism. An earlier special case of (3.2) was discussed in §I1.2, where
G =R and O was a closed orbit, i.e., the circle S.

For global actions of G on M, it is probably profitable to consider
initially very restricted cases, for example, actions on 2-manifolds.
In this case, the possible orbits are well known, see Mostow [72].
Another tractable case might be actions with only two orbits.
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