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1. Introduction. A decision problem for a combinatorial system 
shall denote a pair (<ï>, S) where $ is a specified kind of decision prob­
lem (e.g. word problem, halting problem, etc.) and S is a combina* 
torial system. Likewise, a general combinatorial decision problem, 
i.e. a decision problem for a class of combinatorial systems, shall 
denote a pair (<ï>> C), where * is a specified kind of decision problem 
and C is a general class of combinatorial systems (e.g. Turing ma­
chines, semi-Thue systems, etc.). Clearly, each general combinatorial 
decision problem P has a class of decision problems for combinatorial 
systems associated with it. We shall refer to these problems simply as 
the problems associated with P. 

There are many papers in the literature which deal with the reduc­
tion of one general combinatorial decision problem to another. These 
papers fall into two general groups. The first group consists of un-
solvability proofs such as [ l ] , [8], [lO], [ l l ] and [14]. The general 
format of these proofs is the following: Two general combinatorial 
decision problems Pi and P2 are considered, where Pi is known to be 
unsolvable. Then an effective one-one mapping SF of the problems p 
associated with Pi, into the problems associated with P2 and a uni­
formly effective reduction of p to \p(p) are given. The second group 
consists of proofs of the existence of a problem of each r.e. degree 
of unsolvability associated with some general combinatorial decision 
problem such as [2], [3], [5], [7], [12] and [13]. The general format 
of these proofs is the following: Two general combinatorial decision 
problems Pi and P2 are considered, where Pi is known to have an 
associated problem of each r.e. degree of unsolvability. Then an ef­
fective one-one mapping \j/ of the problems p associated with Pi into 
the problems associated with P2 and uniformly effective reductions 
of p to \p(p) and of \p(p) to p are given. 

Our aim here is to link several of these reductions together in such 
a way as to provide an effective proof of the equivalence of a number 
of general combinatorial decision problems. Furthermore, all of our 
reductions will conform to the second format given above and hence 
for each pair P»-, Pj of general combinatorial decision problems con-
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sidered we shall produce an effective one-one mapping \f/itj of the 
problems p associated with Pi into the problems associated with P2 

such that p is equivalent to *pij(p). 
In particular we shall consider general combinatorial decision prob­

lems for partial recursive functions, Turing machines, Post normal 
systems, semi-Thue systems, canonical forms, correspondence classes 
and propositional calculi. 

2. Preliminary definitions. If ƒ is a partial recursive function on 
the nonnegative integers the definition problem for ƒ is the problem to 
determine for an arbitrary nonnegative integer n whether or not ƒ (n) 
is defined. 

If M is a Turing machine the derivability problem for M is the 
problem of determining for arbitrary configurations a and fi oî M 
whether or not M started in a will eventually reach /3. The halting 
problem for M is the problem of determining of an arbitrary con­
figuration a of M whether or not M started in a eventually halts. 

If 5 is a semi-Thue system, a Post normal system or a canonical 
form the word problem for 5 is the problem of determining of arbi­
trary words Wi and W2 on the alphabet of S whether or not Wi is 
derivable from Wi in S. 

If SA is a semi-Thue system, Post normal system or canonical form 
with axiom the decision problem for SA is the problem of determining 
of an arbitrary word W on the alphabet of SA whether or not W is 
derivable from A in SA. 

A correspondence class C is an effective set of sequences of length n 
(for some fixed n) of nonempty words over a finite alphabet V. If C 
is a correspondence class and a=(ai, • • • , an) and /3 = (/3i, • • • , /3n) 
are sequences of C, then there is a solution for a and /3 if and only if 
there is a positive integer I and a finite sequence i\t i2, • • • , ii of 
the integers 1,2, • • • , n such that 

atjptii • • • ml = Piflii • • • /?»> 

The Post correspondence problem for a correspondence class C is the 
problem of determining of arbitrary sequences a and /3 of C whether 
nor not they have a solution. 

A correspondence class with axiom Cu is simply a correspondence 
class C with a fixed sequence of a of C designated as axiom. The de­
cision problem for a correspondence class with axiom Ca is the problem 
of determining of an arbitrary sequence /3 of Ca whether or not a and 
j8 have a solution. 

A propositional calculus P is specified by: 
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(1) A set S of connectives and a set of propositional variables. We 
shall require that 5 contain at least one binary connective which we 
shall denote by K D " . The wffs of P are the wffs built up in the 
usual way from the connectives of S and the propositional variables. 

(2) A set of wffs of P, to be called "axioms." The theorems of P are 
those wffs of P which can be derived from the axioms using the two 
rules of inference: 

(i) substitution, and 
(ii) a, ( 0 & ) t & . 

The decision problem for a propositional calculus P is the problem to 
determine of an arbitrary wff W of P whether or not W is a theorem 
of P . 

3. The theorem and an outline of the proof. Let R represent the 
general definition problem for partial recursive functions, MD the 
general derivability problem for Turing machines, MH the general 
halting problem for Turing machines, Sw the general word problem 
for semi-Thue systems, SD the general decision problem for semi-
Thue systems with axiom, Nw the general word problem for Post 
normal systems, ND the general decision problem for Post normal 
systems with axiom, Cw the general Post correspondence problem 
for correspondence classes, CD the general decision problem for cor­
respondence classes with axiom, Fw the general word problem for 
canonical forms, FD the general decision problem for canonical forms 
with axiom, and P the general decision problem for propositional 
calculi. 

THEOREM. The general combinatorial decision problems R, MD' 
MH, SW, SD, NW, ND, CW, CD, FW, FD and P are equivalent. Further­
more, for each pair Pi and Pj of these problems there is an effective 
mapping xpij which when applied to any problem associated with P* 
will produce an equivalent problem associated with Py. 

COROLLARY. Every r.e. degree of unsolvability is represented by a 
problem associated with any of the general combinatorial decision prob­
lems of the Theorem. 

We shall indicate how to construct four sequences of reductions 
which may be linked together to obtain the desired result. These 
sequences may be represented diagrammatically as follows: 

I I I I I I IV V 
L R-ÏMD-^SW—>NW—>CW-*R 

VI VII VIII IX X 
2. R—>MH >SD >ND—>CD->R 
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XI XII XII I 
3. Sw —> P >

 FD
 >

 CD 

XIV XV 
4. Nw >FW >CW 

where each arrow represents an effective mapping which when applied 
to any problem associated with the general combinatorial decision 
problem at the tail of the arrow will produce an equivalent problem 
associated with the general combinatorial decision problem rep­
resented at the head of the arrow. The numbers above the arrows 
indicate the order in which these reductions will be given. 

I. This reduction has been carried out by Shepherdson [12]. The 
idea is to construct a "large scale" machine with derivability problem 
equivalent to the given definition problem and then perform succes­
sive reductions to limited register, single register and finally to 
Turing machines maintaining the equivalence of the derivability 
problems at each stage. 

II . This reduction is performed in two stages. One first specifies a 
semi-Thue system from the Turing machine table following Post 
[ l l ] . Left and right symbols are then introduced, as Boone has done 
in [2], and an argument, based on Turing barriers, for the equiva­
lence of the word problem for this system and the derivability prob­
lem for the Turing machine can then be made. 

I I I . This reduction has been carried out by Ihrig [7]. I t is actually 
a refinement of a reduction given in Davis [4], 

IV. This reduction is essentially that of Post [lO]. One can easily 
verify that such an equivalence reduction is possible by carefully 
following Post's proof. 

V. The details of this reduction have been formally carried out by 
Cudia and the writer [3]. 

VI. Shepherdson has carried out this reduction in much the same 
manner as described in I. 

VII. The idea here is to first construct a semi-Thue system T\ 
whose halting problem is equivalent to the halting problem for the 
Turing machine. The construction is the same as that described in 
II. Then, following Davis [4], T% is altered so as to obtain a second 
semi-Thue system T2 having the property that for an arbitrary 
word, W; T2 will eventually reach a certain word WQ if and only if T\ 
halts. The antecedent and consequent of each production of T% 
are then interchanged and the word Wo taken as axiom to obtain the 
desired system. 

VIII . The construction here is essentially the same as that given 
in I I I . 
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IX. The construction here is essentially the same as that given in 
IV. 

X. The reduction given in V can easily be altered to accomplish 
this. 

XI . A proof that this can be done may be found in Gladstone [5], 
Ihrig [7] or Singletary [13]. 

XI I . That such a reduction as this could be carried out was cer­
tainly recognized by Post [8]. The equivalence argument is not 
difficult. 

XI I I . The idea here is to first reduce the word problem for the 
canonical form to that for a Post normal system following Post [8]. 
Equivalence of the problems may be lost but the first is equivalent 
to a recursive subset of the second. The word problem for the re­
sulting Post normal system is then reduced to the Post correspon­
dence problem for a correspondence class as in IX. The desired cor­
respondence class is then an effective subset of the resulting one. 

XIV. This is trivial since a Post normal system is a canonical 
form. 

XV. The reduction here is similar to that outlined in XII I . 
I t is perhaps worth noting that each of these sequences ends with a 

problem for a correspondence class (this is true of 1 and 2 in the dia­
gram since they are circular). The really crucial step in completing 
these sequences, so far as the writer was concerned, was in noting that 
although the equivalence of the problems may be lost each time one 
reduces the problem for a Post normal system to that for a correspon­
dence class, following Post [8], equivalence to the original problem 
can be maintained by sorting out a recursive subset of the resulting 
correspondence class. 
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