ON THE ERGODIC THEOREM FOR POSITIVE OPERATORS¹

BY LOUIS SUCHESTON

Communicated by M. Loève, December 22, 1966

Let (X, \mathfrak{A}, μ) be a σ -finite measure space and let T be a positive linear operator on $L_1(X, \mathfrak{A}, \mu)$. The ratio ergodic theorem of Chacon-Ornstein (see [3], [7], [2]) assumes that $|T|_1$, the L_1 norm of T, is less than or equal to one. Here we discuss the behavior of the ratio under the weaker boundedness assumption (b_h) . All sets and functions introduced below are assumed measurable. All relations are assumed to hold modulo sets of μ -measure zero. L_1^+ is the class of nonnegative not identically vanishing elements of L_1 ; similar conventions apply to other function spaces. $L_1(A)$ is the class of functions f with supp f (support of f), contained in A and $\int |f| < \infty$. $T^p g$ is the function $g + Tg + T^2g + \cdots$. The function $f \cdot 1_A$ is sometimes written f_A . A set A is called closed on a set B if $f \in L_1^+(A)$ implies $1_B \cdot Tf \in L_1(A)$. A set closed on X is called closed.

THEOREM 1. Let h be a fixed function in L^+_{∞} and assume that T satisfies the following condition:

(b_h)
$$\sup_{n} \int T^{n} f \cdot h < \infty \quad \text{for each } f \in L_{1}^{+}.$$

Then the space X uniquely decomposes into sets Y^h and Z^h with the following properties. The set Z^h is closed and, if $f \in L_1(Z^h)$, then

(1)
$$\gamma^*(f) \stackrel{\text{def}}{=} \lim_{n} \left(\sup_{j} n^{-1} \sum_{i=0}^{n-1} \int (T^{i+j} |f| \cdot h) = 0. \right)$$

If $f \in L_1^+(Y^h)$, then $\gamma^*(f) > 0$.

THEOREM 2. Assume (b_h). The set Y^h decomposes into the conservative part YC^h and the dissipative part YD^h : for each $f \in L_1^+$, $T^P f = 0$ or ∞ on YC^h ; $T^P f < \infty$ on YD^h . The subsets of YC^h closed on Y^h form a σ -field, say C^h , and $YC^h \in C^h$. If $X \neq Z^h$, then the equation

(2)
$$e \in L_{\infty}^+, \text{ supp } e = Y^h, T^*e = e$$

¹ Research supported in part by the National Science Foundation Grant GP-1458. Complete proofs, and some examples will appear in Z. Wahrscheinlichkeitstheorie.

admits a solution e which on YC^h is uniquely determined, modulo multiplication by a \mathfrak{C}^h measurable function. If

$$e \cdot f + f_z \in L_1^+, \quad e \cdot g + g_z \in L_1^+,$$

then the ratio

(3)
$$D_n(f,g) \stackrel{\text{def}}{=} \sum_{i=0}^{n-1} T^i f / \sum_{i=0}^{n-1} T^i g$$

converges to a finite limit on the set $Y \cap \text{supp } T^p g$. The limit is $T^p f/T^p g$ on $YD^h \cap \text{supp } T^p g$ and

(4)
$$\frac{E[R(T, YC^h, YD^h)f \cdot e/\mathfrak{S}^h]}{E[R(T, YC^h, YD^h)g \cdot e/\mathfrak{S}^h]}$$

on $YC^h \cap \text{supp } T^p g$, where

(5)
$$R(T, A, B)f = f_A + (Tf_B)_A + \cdots + (T(T^n f_B)_B)_A + \cdots$$

(The conditional expectations in (4) are considered as computed with respect to a finite equivalent measure.)

The standing assumption from now on is (b_1) : (b_h) with h=1, which by the uniform boundedness principle may be stated as:

The superscript h=1 is omitted: we write Z for Z^1 , C for C^1 , etc. A stronger statement than Theorem 1 is now true.

THEOREM 3. If $f \in L_1(Z)$ then $\lim_{x \to \infty} \int T^n f = 0$; if $f \in L_1^+(Y)$ then $\lim_{x \to \infty} \inf_{x \to \infty} \int T^n f > 0$.

Theorem 4. Assume that X = YC and that the σ -field $\mathfrak C$ is trivial. Then there is a unique, up to multiplicative constants, function e satisfying:

(6)
$$e \in L_{\infty}^+$$
, supp $e = X$, $T^*e = e$.

If $f \cdot e \in L_1^+$, $g \cdot e \in L_1^+$, then the limit of $D_n(f, g)$ is on X:

(7)
$$\frac{\int f \cdot e}{\int g \cdot e} = \lim_{n} \frac{\sup_{j} \sum_{i=0}^{n-1} \int T^{i+j} f}{\sup_{j} \sum_{i=0}^{n-1} \int T^{i+j} g} = \lim_{n} \frac{\inf_{j} \sum_{i=0}^{n-1} \int T^{i+j} f}{\inf_{j} \sum_{i=0}^{n-1} \int T^{i+j} g}$$

THEOREM 5. Let $g \in L_1^+(Z)$ and $p \in L_\infty^+(Z)$ be such that

(8)
$$\sum_{i=0}^{\infty} \int T^i g \cdot p = \infty.$$

Then there is a function $f \in L_1^+$ such that

(9)
$$\lim \sup_{n} \left(\sum_{i=0}^{n-1} \int T^{i} f \cdot p \right) / \left(\sum_{i=0}^{n-1} \int T^{i} g \cdot p \right) = \infty.$$

THEOREM 6. Let $g \in L_1^+(Z)$ be such that $T^p g = \infty$ on Z. Then for each function $p \in L_1^+$ there is a function $f \in L_1^+$ with

(10)
$$\limsup_{n} \int D_{n}(f, g) \cdot p = \infty.$$

We now wish to make a statement about the behavior of the ratio at a point, and this motivates the following definition. The operator T is called asymptotically regular (regular) at a point x_0 if for all n sufficiently large (for all positive n), the value of $T^n f$ at x_0 does not depend upon the choice of f in its L_1 equivalence class. In the discrete case T is regular at each point; more generally, operators regular at each point may be defined by transition measures. By a transition measure we understand a function T(x, A) of two variables which for each fixed $A \in \mathfrak{A}$ is a measurable function in $x \in X$; for each fixed $x \in X$, a σ -finite μ -continuous measure in $A \in \mathfrak{A}$. A transition measure $T(\cdot, \cdot)$ acts on L_1 by the relation

(11)
$$Tf(x) = \int_{\mathcal{X}} T(x, dy) f(y) \qquad f \in L_1.$$

THEOREM 7. Let T be asymptotically regular at a point $x_0 \in Z$ and let $g \in L_1^+(Z)$ be such that $T^P g = \infty$ on Z. Then there is a function $f \in L_1^+$ such that

(12)
$$\limsup_{n} D_n(f, g)(x_0) = \infty.$$

The following Theorem 8 is concerned with mean convergence to zero. The case $|T|_1=1$ has been independently obtained by Krengel and Neveu (see [6]); it is implied by, and implies (cf. [5, p. 662]) an L_1 decomposition theorem due to Chacon [1]. Mrs. Dowker [4] proved Theorem 8 in the case when T is an isometry of L_1 of a probability space, generated by a point transformation τ by the relation $f \circ \tau = T^*f$, $f \in L_{\infty}$.

THEOREM 8. Let $e \in L_{\infty}^+$ be such that supp e = Y and $T^*e = e$. If $f \in L_1(YC)$ and $E(f \cdot e/\mathfrak{C}) = 0$, then $n^{-1}(f + Tf + \cdots + T^{n-1}f)$ converges to zero in L_1 mean.

We now sketch the proof of the main assertions of Theorem 1 and Theorem 2. Let $\{L_{\beta}, \beta \in B\}$ be the collection of all Banach limits. Assume (b_h) . For a fixed $\beta \in B$ we show that there is a T^* invariant function e_{β} , either null or in L_{∞}^+ , and such that for each $f \in L_1$

(13)
$$L_{\beta}\left(\int T^{n}f \cdot h\right) = \int f \cdot e_{\beta}.$$

Define Y^h as the maximal among the sets supp e_{β} , $\beta \in \mathbb{B}$. Theorem 1 now follows because the functional applied in (1) to the sequence $\int T^n |f| \cdot h$ is the maximal value of Banach limits. Among the functions e_{β} , $\beta \in \mathbb{B}$ there is at least one, say e, which is a solution of (2). The operator V defined by

$$Vf = e \cdot T[f/(e + 1_{Z_b})]$$

has the L_1 norm less than or equal to one, and the convergence of (3) to a finite limit follows by application to this operator of the Chacon-Ornstein theorem.

In conclusion the author wishes to acknowledge the helpful comments of Mr. L. A. Klimko.

BIBLIOGRAPHY

- 1. R. V. Chacon, Resolution of positive operators, Bull. Amer. Math. Soc. 68 (1962), 572-574.
- 2. ——, Identification of the limit of operator averages, J. Math. Mech. 11 (1962), 957-961
- 3. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
- 4. Y. N. Dowker, On measurable transformations in finite measure spaces, Ann. of Math. 62 (1955), 504-516.
- 5. N. Dunford and J. T. Schwartz, *Linear operators*. I, Interscience, New York, 1958.
- 6. U. Krengel, On the global limit behaviour of Markov chains and of general non-singular Markov processes, Z. Wahrscheinlichkeitstheorie (to appear).
- 7. J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco, 1965.

THE OHIO STATE UNIVERSITY