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1. Introduction. A func t ion/^) , analytic in the open unit disc in 
the complex s-plane (denoted by D) is said to be close-to-convex if 
there exists a convex univalent function <f>{z) such that Re(/ '(2)/#'(2)) 
> 0 for all z in D. In what follows, there is no loss of generality if we 
assume f(z) to be normalized i.e., /(O) = 0 and ƒ (0) = 1. We can also 
assume tha t </>(0) = 0 and | <£'(0) | = 1 . We denote the class of normal­
ized close-to-convex functions by K. I t is well known that K is a 
proper subclass of 5—the family of normalized univalent functions 
in D (see [3]). 

In this paper we announce the solutions to two general extremal 
problems within the class K and, as an application, we announce the 
rotation theorem for the class K. In the process of solving these ex­
tremal problems for the class K, the solutions to these extremal prob­
lems for several subclasses of K are found. Some of these solutions 
are known; we announce the results which do not appear to be known. 

2. Results for close-to-convex functions. The first problem under 
consideration is a general coefficient problem. We have the following 
coefficient theorem for K. 

THEOREM 1. Let F(z2, • • • , zn) be any f unction having continuous 
derivatives in each of the n — \ variables z2> • • • , zn. To each f unction 
f(z)=z-\-a2z

2 + • • • in K associate the number Re{F(a2, • • • , an)). 
Then any function f(z) in K which maximizes Re {F(a2l • • • , an)} 
over the class K must be of the form 

N e—iy _|_ 20*(0*+7) 

^ Vk~~< ^ 
* - i 1 — ze^k 

where 
1 The results presented in this paper are contained in the author 's Ph.D. disserta­

tion a t the Belfer Graduate School of Science of Yeshiva University, written under 
the direction of Professor Harry E. Rauch. 

2 Research partially sponsored by the Air Force Office of Scientific Research, 
Office of Aerospace Research, U. S. Air Force, under AFOSR Grant No. AF-AFOSR-
1077-66. 
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i=l 

iV 
5 3 ^ = 1, —7T ^ ay ^ 7T, —7T ^ & ^ 7T. 

We next consider a general extremal problem for K. 

THEOREM 2. Z,£/ ^(w) be a given entire function and z a given point 
in D. Then the functional Re F [log ƒ(z)] attains its maximum in the 
class K only for functions of the form 

(1) f(z) = (1 - zeia)-2(l - 2«?*«*+2*>)(l - s ^ ) - 1 

w/zere | y | <7r/2, —7r^a^7r cmd —7r^jS^7r. We exclude from con­
sideration the case in which for the extremal f'(z), F'[logf(z)] = 0. 

REMARKS. X is a compact family and hence there are functions in 
K which maximize each of these functionals. We also note that the 
final condition in Theorem 2 is satisfied for all "interesting" F(w). 

Setting F(w) = ± iw in Theorem 2 we have the rotation theorem for 
K. 

COROLLARY 1. The functional arg | / '0s) | attains its maximum in K 
only f or a function of the form (1). Thus, for all z in D we have 

| arg ƒ' (s) | ^ Max | arg (1 - zeia)~2(l - ze^+^){\ - ze^11 

= 4 sin~l | z | < 2TT. 

3. Outline of proof. The class K has the following parametric 
representation in terms of two Stieltjes integrals: 

(2) 

f(z) = e**expf-2 I log (1 - zeu)da(t)j 

( r* eu + z \ 
• ( cosy I —; d/3(t) — i sin y 1 

where «(/) and fi(t) are monotone nondecreasing functions for —ir^t 
^7r and satisfy Jlvda{t) =fl7rd^(t) — 1. Variations within the class K 
are obtained by varying a(t) and fi(t) independently within the class 
of monotone nondecreasing functions on [—IT, w] having total varia­
tion 1. This variation is accomplished by means of a method due to 
G. M. Goluzin [ l ] . Using these variation formulas for K, we prove 
tha t the functions a(t) and fi(t) which appear in the integral repre­
sentation for an extremal function must be step functions having at 
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most n — \ jumps in the case of Theorem 1 and having one jump in 
the case of Theorem 2. Evaluating (2) with the given a(t) and fi(t) 
we have the stated results. The details will be published elsewhere. 

4. Subclasses of K. Let 5* denote the class of normalized starlike 
functions in JD, let C denote the class of normalized convex functions 
in D and let Pf denote the class of normalized functions whose deriva­
tive has positive real part in D. S*, C and Pr are subclasses of K (see 
[3]). 

The coefficient theorem for S* was proved by Hummel [2], and the 
general extremal problem of Theorem 2 for 5* was solved by Goluzin 
[i]. 

The coefficient theorem for C follows from Hummel's result for S*. 
We have the following result for C: 

THEOREM 3. Let F(w) be a given entire function and z a given point 
in D. Then the functional Re F [log ƒ' (z)] attains its maximum in the 
class C only for functions of the form 

f'(z) = (1 - ze-)"2 

where —7r^a^7r. We exclude from consideration the case in which f or 
the extremal function f(z), F' [log ƒ (2) ] = 0. 

The coefficient theorem for P' follows from the work of M. S. 
Robertson [4]. We have the following theorem for P' 

THEOREM 4. Let F(w) be a given entire function and z a given point 
in D. Then the functional Re {F [log f (z) ]} attains its maximum in the 
class P' only for functions of the form 

1 + zeia 

(3) ƒ(«) = r 
1 — zeta 

where —wSoi^Tr. We exclude from consideration the case in which f or 
the extremal function F' [log f(z) ] — 0. 

Setting F{w) = ± iw in Theorem 4 we have the rotation theorem 
f o r P ' : 

COROLLARY 2. The functional \ axgf(z) \ attains its maximum in P' 
only f or a function of the form (3). Thus, 

arg f'(z) J ^ Max 
1 + zeia 

a rg - r 
1 — ze%a 

2 | z\ ir 
< 

1 + \z 2 2 
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The remarks following Theorem 2 for K apply here for the classes 
C and P' as well. 

5. Remark. After seeing the research reported on in this paper, 
Professor Donald J. Newman pointed out that the bounds on the 
arguments given above follow from the representation (2). The inte­
grals appearing in (2) are convex combinations of the integrands, 
and the bounds on the argument of the integrands are easy computa­
tions. Of course, the forms of the extremal functions and in particular 
the sharpness of the rotation theorems do not follow. 
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