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This paper is concerned with a study of some aspects of the sta-
bility question for finite difference methods for the integration of a
system of linear ordinary differential equations with constant coeffi-
cients. Such a system may be written as follows:

1) du(t)/dt = Mu(t), t=0,
(2 #(0) = uo,

where M is a given #n X7 complex matrix, #(t) ER, for all 120, and u,
is a given vector in R,.

The discrete counterpart of the problem (1), (2) to be considered
here is a one-parameter family of discretizations of the form

A3) u(t + k) = S(B)ui(t), t=0,
4) u(0) = o,

where k is a positive real parameter tending to 0, S(k) is an nXn
complex matrix depending only on &, and u(t) ER, for all £20, £>0.

DEFINITION 1. The one-parameter family of discretizations (3),
(4) is said to be consistent with (1), (2) if and only if

S Sk —Dn/k— M” —0 as k—0 for any matrix norm.

Various types of stability are introduced in

DEFINITION 2. A one-parameter family of discretizations, {B(k)},
is said to be

(1) stable if and only if for any 7> 0 there exist positive constants
C and ko such that ||.S»(k)|| < C for all 0<%k <k, and all positive inte-
gers n such that nk=T,

(2) strictly stable if and only if there exists positive constants %,
and C such that ||S"(k)|| < C for all 0<k <k, and all positive integers
n. If ko is the largest such constant, then (0, ko] is called the interval of
strict stability.

(3) completely strictly stable if and only if there exists a positive
constant C(k) such that ||S*(k)|| < C(k) for all #>0 and all positive
integers .

(4) umiformly strictly stable if and only if there exists a positive
constant C such that ||S*(k)|| < C for all positive ¥ and nonnegative
integers #.

1 This research was supported in part by NSF Grant GP-5553.
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The following result is obvious.

LemMA 1. Uniform sirict stability implies complete strict stability
implies strict stability implies stability.

THEOREM 1. Every one-parameter family of discretizations, {S(k) !,
consistent with (1), (2) is stable.

Proor. Condition (5) implies ||S(k)|| =140(k) as £} 0, i.e., there
exist positive constants k;, K such that (||S(%)||—1)/k<K for all
0<k<ki Given T>0, let #>0 and 2>0 be such that #k<T and
k< ks Then ||S*(k)|| <[/ S(k)||» < e*. QED.

The following classical result will be useful. For a proof see [3].

THEOREM 2. Let M be an n Xn complex matrix. Then,

(A) the set { M} is equicontinuous with respect to n=0 if and only if
p(M) =max 1si§n\ (M) | =1, where N(M) is an eigenvalue of M,
and for every eigenvalue N; with |}\j] =1 and multiplicity m; there are m;
corresponding eigenvectors,

(B) {eM ‘] is equicontinuous with respect to t=0, i.e., M is the in-
finitesimal generator of an equicontinuous Co-semigroup, if and only if
o(M)=max 15isn Re NS0 and for every eigenvalue \; with Re
N;=0 and multiplicity m;, there are m; corresponding eigenvectors.

In this paper A(n) will denote the set of #X#n complex matrices
satisfying the conditions of Theorem 2(A) and B(%) the set of nX#
complex matrices satisfying the conditions of Theorem 2(B).

A well-known theorem of semigroup theory states that M & B(n)
if and only if the one-parameter family of discretizations formed from
the backwards difference approximation is uniformly strictly stable
(cf. [2]). This result has led to the following two conjectures: If
M&EB(n), then

(I) every one-parameter family of discretizations consistent to (1),
(2) is strictly stable,

(IT) “implicit” one-parameter families of discretizations consistent
to (1), (2) are uniformly strictly stable.

It will be shown that even if M EB(n), there exists a consistent
one-parameter family of discretizations of every stability type. In
the course of this, counter examples to conjectures I and II will be
given. First, some notation is introduced.

DEeFINITION 3. The function R(2), analytic in a neighborhood of 0,
is said to be a consistent approximation to e* if and only if R(z) has a
power series development about 2=0 which agrees through at least
linear terms with the power series development of e=.

If R(z) is such an approximation then {R(kM)} forms a one-
parameter family of discretizations consistent with (1), (2). In par-
ticular, the following classes of approximations are important:
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DEeFINITION 4. Let D_ and D, be the classes of meromorphic com-
plex-valued functions of a complex variable defined by
D_= {R(z) l R(2) analytic in a neighborhood of the left half plane and

| R(2)| =1 for all zsuch that Re 2<0},
D,= {R(z) | R(2) analytic in a neighborhood of the negative real axis
and lR(z)I =1 for all real z such that zéO}.

ReEMARKS. (1) It follows from a Lemma of Birkhoff and Varga,
(cf. [1]), that all the diagonal Padé approximations to e* belong to
D_, it also follows by inspection that the backwards difference ap-
proximation belongs to D_.

(2) It follows from a Theorem of Varga, (cf. [6]), that a Padé ap-
proximation to e is in D, if and only if it is a diagonal or subdiagonal
approximation.

THEOREM 3. Let M EB(n). Then, Re N(M) =0 implies N\=0 if and
only if the one-parameter family of discretizations for the forward differ-
ence approximation {I +EM } is strictly stable. The interval of strict
stability is (0, 7] where 7=min {(—2 Re Ni/|N:|DNi20}, or +w
if this set is empty.

ProoF. If: If the set {\i|N;=0} is empty there is nothing to prove.
Otherwise there exists a constant ¢>0 such that min Y #0(—2 Re \;
/INi|2)>k>0 implies ||(I+EM)"||<C for all =0 and hence
p(I+EM)=1.

Only if . If the set {)\.~|)\i;é0} is empty, p(I+kM)=1 for all >0
and 7=+ . Otherwise it is easy to check that p(I+,M) =1 for all
0<k=min »_ (—2 Re Ns/|\i|?). Since S(k)=Sup nsol|(I+EM)"|
is a continuous function with respect to k, it has a maximum on the
compact interval [0, miny_, (—2 ReXy/|\:|?)]. QED.

CorOLLARY 1. If M0, and MEB(n), then the one-parameter
family of discretizations based on the forward difference method may be
either strictly stable or not.

This shows that the first conjecture is false. The following counter-
example shows that the second conjecture is also false.

CoOUNTER-EXAMPLE. The one-parameter family of discretizations of
(1), (2) with

M= [—1 1]63(2)
0 —1
based on the Crank-Nicholson method is not uniformly sirictly stable.

Proor. For the Crank-Nicholson method

S(k)_[l-l—a -—a]“l[l—a a] 12
Lo 1+4a 0 1—af Y7
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The proof is completed by setting k=#n'? and showing that
|| S"(n1/2)||— © as n— «. QED.
The most general statement one can hope to make is the following:

THEOREM 4. If R(2) is a consistent approximation to e, then
{R(EM)} is completely strictly stable for every M EB(n) if and only if
R(@)ED_.

Proor. If: The eigenvalues of R(kM) are of the form R(EN\) where
N\ is an eigenvalue of M. By Theorem 2(B), Re A =0 with equality
only if the number of eigenvectors corresponding to A equals the
multiplicity of \. Since R is in D_| R(EN) [ <1 except when A =0, then
|R(0)| =1 with the number of eigenvectors corresponding to R(0)
equal to the multiplicity of R(0). The result then follows by applying
Theorem 2(A). QED.

Only if: The proof is by contradiction. If R(2) is not in D_, then one
can construct a diagonal matrix, satisfying all the appropriate condi-
tions, with an eigenvalue \ such that | R(EN) | >1 for some £ >0. This
is a contradiction. QED.

If M should have the property that HM H =p(M) for some matrix
norm, e.g. if M is Hermitian, then the following result holds:

COROLLARY 2. If R(2) ED_ and MEB(n) is such that || M|| = p(M)
for some matrix norm then { R(kM)} is uniformly strictly stable.

The results may be strengthened when M is Hermitian.

THEOREM 5. If R(2) is a consistent approximaiion to e, then
{R(kM )} is uniformly strictly stable for every Hermitian M EB(n) if
and only if R(z) ED,,.

CoROLLARY 3. If R(2) s a diagonal or subdiagonal Padé approxima-
tion to e, then { R(kM)} is uniformly strictly stable for every Hermitian
M & B(n).
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