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Introduction. I t is known tha t the convolution of two members, 
ƒ and g, of L2( — °°, 4- °° ) can be a null function without either ƒ or g 
being a null function. But, if one defines ƒ„ by setting fv(x) =eivxf(x) 
for all x, fy and g will have a convolution that is not a null function 
for a suitable choice of v. There is apparently no information available 
on how the L2-norm of the latter convolution depends on v. 

A partial answer to this problem will be provided in the present 
paper. There will be derived a lower bound on the supremum in v of 
the 1,2-norm of the convolution of ƒ„ and g. The lower bound will be 
expressed in terms of a notion of e-approximate support which is an 
L\(— oo, + oo) analog of the concept of support of a continuous func­
tion on a locally compact space. The inequality will be shown to be 
sharp in the sense tha t one can construct an ƒ and a g for which the 
lower bound is approached arbitrarily closely. 

Definitions and notation. Because of the need for uniqueness and 
because of the nature of the Li-norm, an appropriate analog for 
Li(— oo, + oo) of the notion of support is the following. 

DEFINITION. The e-approximate support of a member ƒ of 
L\{ — oo, + oo ) is defined to be the closed interval Ie,f such that 

(a) 76,/ is symmetric about the smallest real number x0 for which 

l/(*)|d*-(*)||/IU 
—oo 

(b) ƒ/.•!ƒ(*) |<te = ( l - e ) | | / | | i . 
||/||i being the Li-norm of f. The existence and uniqueness of x0 and 
Iej are clear from the absolute continuity of the indefinite integral 
of I/! -

For any Lebesgue-measurable set E the measure of E is denoted 
by m(E) and the characteristic function is denoted by x(£)« Given 
any two measurable functions on the real numbers, ƒ and g, such 
that for almost all x, f(y)g(x--y) is in Li(— oo, + oo) one denotes by 
ƒ * g the function for which (ƒ * g)(x) =:ftZf(y)g(%--y)dy a.e. Given 
any ƒ in Li(—«>, + oo)nL2(— °°, + 0 0 ) one defines the Fourier 
transform of ƒ, denoted by ƒ, by requiring that for all real co, 
/(<o)==(27r)""1/2/i£exp (--icjûx)f(x)dx. Thus, the definition of ƒ for an 
arbitrary ƒ in L2(— oo, + oo) is determined. 

693 



694 D. R. ANDERSON [July 

Results. One lemma is required for proof of the principal result. 
I t appears below. 

LEMMA. Given any two nonnegative, nonnull functions h and k in 
L\(— oo, + oo) such that | |A||I = ||&||I = 1, then 

(1) sup (A * *)(*) è sup (1 - ey[m(L,h) + m{htk)]~\ 
~oo<o;<+oo 0 < É < 1 

PROOF. For any real e such tha t 0 < € < 1 , we define he and fe€, non-
negative and nonnull members of i i ( — oo, + oo ), by the equations 
below. 

(2) he(z) = xj9fh(z)h(z), all z, 

(3) k€(x) = xi€tk(z)k(z), all z. 

First, one can use (2) and (3) to write: 

m(Ie,h) + m(I€>k) = m{ [x \ Ie,h C\ (x - I.,h) 9* 0]} 

(4) = m{ [x I By3yE: /«,*, X - y G ƒ«,*]} 

^m{[x\ (h€*k€)(x) 7* O]}. 

Then since ke(x)he(y) belongs to L i [ ( ~ 00, + oo)X(— 00, + 00)], one 
can combine (4) with the Fubini theorem for multiple integrals and 
well-known properties of the transformation T defined by T(x> y) 
= (x—y> y) to write the following sequence of equalities. 

[tn(I€,h) + m(I€tk)] sup (h * k)(x) 
L— <»<a:<+oo J 

è m({x I (A, * ke)(x) 7̂  O}) sup (h * k){x) 
\_-<x><X<+<*> J 

^m{[x\ (A. * Ae)(*) ^ 0]} sup (A.**,)(*) 
L-QO<a;<+ao J 

ƒ +00 

(h.*k,)(x)dx 
- 0 0 

ƒ +00 /•+<*> 

I [Ae(;y)&e(tf - y)] dxdy 
- o o * ^ - o o 

ƒ +00 /• +00 

I [AcGO *«(*)] <fo#y 
- 0 0 ^ - 0 0 

= ( ƒ h.(y)dy)(f Hx)dx\ 

= (1 - 6)2. 
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The conclusion of this lemma follows directly from (5). 
This lemma permits one to prove the following theorem. 

THEOREM. Let ƒ and g be any two members of L2(— °° » + °°) such 
that ||/||2 = ||g||2 = l. Letfv(x)=eivxf(x)for all x. Let F(x) = \j(x)\2 and 
G(x) = J g(x) 12 for all x. Then 

(6) sup | | />*g | | iè sup (l-e){2w[m(I€,F)+m(Ie,o)]-1}112. 
-00 < y < + o o 0 < e < l 

The inequality (6) is sharp in the sense that for every positive number rj 
there are choices of ƒ and g for which the right side of the inequality is 
finite and for which the ratio of the expression on the left-hand side of 
(6) to the expression on the right-hand side exceeds 1 by less than rj. 

PROOF. The lemma and the Plancherel theorem combined yield (6). 
To prove the rest of the theorem, let y\ be a fixed but arbitrary 

positive number. Then two members, p and q, of L2(— °°, + °°) will 
be defined and shown to have the asserted properties relative to 77. 
These functions will be defined in terms of their Fourier transforms. 

(7) K«) = 
( T A ) - " * ( 1 + io>)-\ 

0, 

w < tan — A, 
1 1 2 

I 1 "" 

w > tan — A, 
I I 2 

(8) q(u) 

T-1'2(1 + iAw)-1, I co I ^ A"1 tan — A, 

0, co > A - 1 tan — A. 

Here A is assumed to be positive and less than 1. Then, with the aid 
of the definitions of p and q and the Plancherel theorem, it can be 
seen that one has: 

[ / • + » -11/2 

2TT I \p(o)-v)\2\q(o))\2dœ\ 
J —00 J 

(9) r r+o° n1/2 

= l2*J_ lK*>)l2U(")No>J • 
And the latter integral has the following evaluation. 



696 D. R. ANDERSON [July 

X 
+00 

p(œ)\2\ q(o))\2dü> 

(10) 
/ TT TT Y"1 / t a n TT A / 2 \ 

= (2A~ 1 tan—A + 2tan — A ) ( — ] 
\ 2 2 / \ TTA/2 / 

1 - 2/TT tan"1 (A tan TTA/2)\ 

1 - A / ' 

However, one can see: 

(ID fn(Io,p) = 2 tan — A, 

(12) w>(h,o) = 2A""1 tan — A 

where P and Ç are determined by setting P(co) = | p(o)) | 2 and Q(co) 
= | #(co) | 2 for all co. Thus, there results: 

,1/2 

(13) 
( 

2A_1 tan — A + tan 
T V 

TV 
â sup (1 - « ) { 2 T [ » ( / . . P ) + « ( / . . Q ) ] - 1 } 1 ^ . 

0<«<l 

Hence, combining (6), (9), (10), and (13), one can conclude that 
when A is small enough for 

•K 2 / 7T \ 
tan — A 1 tan - 11 A tan — A 1 

2 IT \ 2 / 
L T A / 2 1 - A 

to be less than rf, then the same is true of 

( 1 - e)(2r)i/« 

- 1 

( . . s + >. *)/{.!?<, [»(/..p) + m{It,Q)]w } - L 

It is, of course, clear from (9) and (10) that sup-ao<F<+ao||^„ * g||2 is 
finite. 

Thus, the second part of the theorem has been approved. 

COROLLARY. Let the notation of the theorem hold. Further, let ƒ and g 
be restrictions to ( — oo, +00) of entire functions of exponential type 
such that the types of f and g are E\ and E2, respectively. Then 

t w ~l1/2 

l J 
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PROOF. AS indicated by Theorem 21 [ l ] the transforms of ƒ and g 
vanish outside [ — JSi, Ei] and [—-E2, £2] respectively. Thus, 

(14) »(ƒ. , , ) ^ 4Ex, 

(15) m(I0,o) g 4E2. 

Since the indefinite integrals of | / | and |g | are absolutely continuous, 
(14) and (15) permit the following inequality. 

(16) sup (1 - €) {2x[w(/itF) + m{h,o)Y1} *'* ^ {27r[4Ex + 4E2]-1} x'2. 
0 < € < 1 

The assertion of the corollary follows from (16) and the theorem. 
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