
STRUCTURE OF CATEGORIES 

BY JOHN R. ISBELL 

Introduction. This paper sets out to develop a structure theory of 
categories and carries it, not very far, but far enough for some ap­
plications. We need a new definition of complete (coinciding with old 
definitions [2], [8] for well-powered co-well-powered categories). The 
new definition is needed even to construct images of mappings. With 
it, we can show that every completion of a small category, and also 
every primitive category of algebras, is a retract of any category in 
which it is fully embedded. Such categories are called injective] 
strictly stronger injectiveness properties are rather trivial. By a com­
pletion of & is meant a complete category in which Cfc is fully em­
bedded so that no complete full proper subcategory contains it. The 
results stated come from the regular completion theory concerning 
complete extensions of GL, regularly represented in Cat((£*, CU), and 
the statements given are simply the main applications of two theo­
rems to the effect that complete categories satisfying certain bound-
edness conditions are injective. Apparatus is set up, bu t not de­
veloped, for a general completion theory and finer tests for injective­
ness. 

Precise statements of results cannot well be given before we estab­
lish the set-theoretic foundation (§1). The new clause in the defini­
tion of completeness requires every intersection of extremal sub-
objects [8] to be representable, and the dual. Then every completion 
of a small category 0, is well-powered, no intermediate full subcate­
gory is left complete, and the embedding preserves all limits that may 
exist in Ô (and dually). Unfortunately, retraction preserves com­
pleteness only in the weaker sense of [8] ; and, since not every cate­
gory has a completion in the same Grothendieck universe, and in­
jectiveness is defined relative to a universe, I can prove that an 
injective category is complete only in the still weaker sense of Freyd 
[2]. In any of these senses, up to an equivalence of categories, a left 
complete full subcategory of a complete category is both left closed 
in its right closure and right closed in its left closure. Accordingly, 
one would hope, from Freyd's theorems on existence of adjoints, to 
retract by a reflector and a coreflector. This question is pursued for 
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some distance (roughly, the second adjoint functor always exists), 
but the hypothesis that comes out presents an unsolved problem 
even in the category of abelian groups. 

I am indebted to K. H. Hofmann and P. S. Mostert for patient 
criticism of many revisions of the first half of this paper. 

1. Fundamentals. Constructions in this paper will require some­
thing like the Grothendieck theory of universes, but they require 
less and I take what seems to be a different point of view. The well-
known fact that some basic constructions applied to large categories 
take us out of the universe seems to me to indicate that the construc­
tions are not yet properly presented. The discovery of proper pres­
entations is too difficult, though, for all work on these constructions 
to wait for it. Therefore, we assume one Grothendieck universe and, 
outside it, a collection of improper or extraordinary sets which will be 
used for improper constructions. 

Precisely, we assume a Gödel-Bernays set theory having sets and 
proper classes and having at least one uncountable strongly inacces­
sible cardinal number oo, henceforth supposed fixed. We assume for 
convenience that the class of all sets can be well ordered. We recall 
tha t there is a fairly easily defined set M of oo "hereditarily small" 
sets which can be regarded as a model for ordinary set theory (a 
Grothendieck universe; technically, a supercomplete Shepherdson 
model [l3]). A legitimate or "proper" set should be defined as a 
member of M, and a legitimate class or category should be contained 
in M. However, we wish to deemphasize unimportant distinctions 
between isomorphic or equivalent categories, and therefore we make 
the following definitions. 

A set is small, large, or extraordinary according as its cardinal num­
ber is < 00, 00, or > 00. A category is defined as usual [12] and may 
be a proper class. A small category is a category whose class of map­
pings is a small set. A locally small category is one in which every set 
of coterminal ( = coinitial and cofinal) mappings is small. A category 
is ordinary if it is locally small and has at most 00 objects. 

We fix the notation % for the category of all small sets and the 
functions between them, which is locally small. The category of all 
sets and functions will be called ^l! A covariant functor F: (5—>°IL or 
F: C— ÎL! will be called a grounding of C, respectively ordinary or 
extraordinary. Either modifier might be omitted, but only "extraor­
dinary" will be omitted in this paper, when it is clear from the con­
text. The dual notion (F: C*—>°U or ^ l ) is cogrounding. 

<2>(X, Y) denotes the set of maps from X to F in C. The symbol 
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C( , X) , which may be replaced by hx when it is clear what <B is 
meant, denotes the cogrounding denned by hx(W) = Q(Wy X), 
hx(f)(g) =gf- The cogroundings hx and their covariant analogues hx 

are called principal', an unambiguous common name for them is 
principal functors ; and the functors naturally equivalent to them are 
called representable. If (B is a full subcategory of 6, the restriction of 
6( , X) to (B may be designated (B( , X), even when X is not in 
(B, provided the embedding of (B in C is clear from the context; such 
a functor is representable in 6. 

The categories which, unlike ^ l or even °ll, have only a set of map­
pings, form with their functors a category Cat. Thus Cat(6 , 3D) 
should mean a set of functors. We enrich the symbol to mean the 
category of functors (covariant) from 6 to 3D with their natural trans­
formations; moreover, we use the symbol even if 3D has a proper class 
of maps, so long as C does not. In this case each functor from C to 
£> must take <B into a set-subcategory of 3D, so that by using any of 
several conventions as to what an element of Cat(C, 3D) is, it becomes 
a genuine category. 

In particular, for every category 6 with a set of objects, the co­
groundings of 6 form a category Cat(C*, «U!). The correspondence 
X—>hx gives a full embedding, the (left) regular representation of (3. 
The right regular representation by groundings is a dual embedding. 
For ordinary categories we also (perhaps preferably) apply the same 
terms to the representations by ordinary cogroundings and ground­
ings. 

There are also subregular representations X—KB( , X) (respectively 
(B(X, )). (B is left adequate (right adequate) if the (right) subregular 
representation over (B is a full (dual) embedding. 

When the name of the category 6 is long or otherwise distracting, 
we may write Hom(X, Y) instead of C(X, Y). We shall want (mainly 
for the sequel) to combine the two regular representations in 
Cat(6*, Oil) and Cat(C, cll!). These functor categories are related by 
a pair of contravariant functors called conjugations. The conjugate 
of either a grounding or a cogrounding F is called F* in [6], and this 
short notation will be convenient; but for clarity we had better define 
Xi :Cat (C*, ca!)*->Cat(e, <ll!) and K2: Cat(6 , ai!)*->Cat(e*, ^1). 
Each K±(F) = F*: (B -> Ol! is defined by F*(X) = Hom(F, hx), 
[F*(f)($)]w(p)=f<$>w(p), for PGF(W), $GF*(X), f:X->Y; for 
^ : F-+G, K1(V):G*-*F* takes each Hom(G, hx) to Hom(F, hx) by 
composition with ^ . i£2 is defined dually. The functors Ki, K2 are 
adjoint on the right, i.e. the functors of two variables .Fin Cat(G*, ll!), 
G in Cat(G, OL!), symbolized by Hom(F, K2(G)), Hom(G, KX(F)), 
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are naturally equivalent. The easiest way to see this is by means of a 
neutral description of the sets Hom*(.F, G) corresponding to 
Hom(F, G*) or to Hom(G, F*). A coupling of F: 6 * - ^ ! , G: e - ^ ! 
is a function m assigning to every ordered pair (p, q) with pÇzF(X), 
qGG(Y), a map m(p9 q) :X-*Yso thatm(F(f)(p), G(g)(q)) = gm(p, q)f 
identically for maps ƒ with range X and g with domain Y in 6. 

1.1. There is a one-to-one correspondence between couplings m of 
F, G and natural transformations /x: G—>F*y defined by 

\jVY(q)]x(p) = m(p, q). 

We omit the routine verification. Combining 1.1 with its dual and 
a verification of naturality, one gets the adjointness of K\ and K2, 
which we will not use explicitly. 

A grounding couple consists of a cogrounding F, a grounding G, 
and a coupl ings . The couple category Co(<3, ^ I ) has these couples for 
objects, and for mappings the conjoint transformations (Fi, Gi, mi) 
—K^2, G2, w2), which are pairs of natural transformations <ï>: F\—>F2, 
\F: G2—>Gi, satisfying m^^xip), q) = mi(p, ^r(<z))- There is a full em­
bedding of 6 in Co(6, ^ l ) taking each X to the principal couple 
(hx, hx, - ) ;we call this the double regular envelope of <B. Both regular 
representations are factors of the double regular envelope in a natural 
way; for example, F in Cat((B*, «U!) goes to (F, F*, m), where m is 
the coupling corresponding by 1.1 to 1: F*-^>F*. These functors are 
again full embeddings. 

Co(C, cll!) is a high first approximation to a largest reasonable ex­
tension of C To adjoin any object X to 6 we need the coupled func­
tors C( , X) and <B(X, ). In requiring that the adjoined objects 
map just by conjoint transformations we are, of course, imposing a 
restriction. 

We note a second approximation to a largest reasonable extension. 
A grounding couple (F, G, m), or the coupling m, is separated if when­
ever pv£pf in F(X), there exist Y and q in G(Y) such that m(p> q) 
5ém(p', q), and dually. 

1.2. Couplings m of principal functors hx, hY are determined by the 
map m(\x, ly) = m1 and are separated if and only if ml is bimorphic 
(epimorphic and monomorphic). 

The proof is a routine application of the Yoneda lemma which says 
that the regular representations are full embeddings and consequently 
hx, hx are conjugate. 

REMARK. For sets, (suitable) spaces with base point, abelian groups 
and Banach spaces, a t least, there is a Fuks-Svarc duality 
P : C a t ( C , e )*->Cat(e , 6) , self-adjoint on the right. (See [12] for 
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references, under Fuks, Svarc, Mitjagin, and combinations.) One 
naturally wants to compare with conjugations Ki, K2. These cate­
gories have extensions 8 in which D turns into a categorical duality 
Di: 8>*+->8> and there is a second-order duality D2 for functors. Using 
JDI, one can derive K\ and K2 from a duality K of the same nature 
as D2 (contravariant on Cat(8, 8) to itself). K and D2, though simi­
larly constructed, do not commute. 

2. Limits and factorization. A contravariant ideal of a category e, 
in an object X, is an arbitrary subfunctor J of (B( , X). (That is, 
I(W)Q®(W, X) and maps by restrictions.) The representable con­
travariant ideals are [8] the principal ideals generated by mono-
morphisms m: S-+X; these will be called subobjects in the wide sense, 
or wide or mono subobjects. (They are in a natural one-to-one cor­
respondence with the subobjects of Grothendieck [4], Freyd [2]. 
The partial ordering [4] reduces in the present formulation to the sub-
functor ordering.) 

In suitable contexts we may refer to a monomorphic generator m 
or even to an object 5 as a "subobject" of X. Less drastically, any 
ideal ICZhx may be confused with the union of its values I(W). 
(This is a "right ideal" in Eckmann-Hilton [l].) In the same spirit, 
a functor F: 6—>cll! is said to be generated by a set of values of F or 
elements of values of F if no proper subfunctor has all those values, 
respectively elements of values. F is properly generated if it is gener­
ated by some small set of elements of its values. 

Generators suggest relations. An ideal I in X is called strict if 
there is a set of pairs of maps ha: X—»Fa, ka: X-^Ya, such that each 
value I(W) is the set of all ƒ : W-^X satisfying haf = kaf for all a. If I 
is at the same time a wide subobject, then it is called a strict subobject. 
A monomorphism is strict if the subobject it generates is strict. 

Strict ideals are a special case of limit functors, and their represen­
tations (strict subobjects) are limits. In general, a diagram D in a 
category C is a functor D: 3D—>(B whose domain category is a set.1 

The limit functor LD of D is defined by means of the functor K: C 
—>Cat(£>, 6) which takes each object W to the constant functor Kw 
all of whose values are \w\ LD is JIDK. A limit of D is a representation 
of LD- The dual concept is colimit. 

Diagrams, a t least the finite ones, can be drawn; a mapping (or 
object = identity mapping) "in" D: 3D—>C is a mapping g: X-+Y of 
6 indexed by a mapping ƒ of 3D such that D(f) =g. Maps <£>: Kw—>D 
correspond to left conical extensions (l.c.e.'s) of D in which W is 

1 Possibly extraordinary. 
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attached to each object X in D by one map, so that all the triangles 

W->X 

(2.0) \ I 

Y 

are commutative. A limit corresponds to a universal l.c.e. Wo—> • • • , 
from which each other l.c.e. arises by multiplying in a unique map 
W—*Wo. The picture helps in seeing some properties of limits, e.g. the 
following. If a diagram D is the union of a directed set of subdiagrams 
Da having limits La> then the inverse mapping system D' formed by 
the La and the obvious bonding maps (a conical extension is conical 
over any subdiagram) has the same limit functor as D. This is a rule 
for expressing limits as limits of limits, and there is another such rule: 
a limit of a diagram D is a strict subobject of a direct product2 of all 
the objects in Dt with the defining relations haf — kaf expressing com-
mutativity of the triangles (2.0). Unfortunately, there is no rule for 
expressing limits of limits (of diagrams in a subcategory (E) as simple 
limits (of diagrams in (B), and it is not generally possible. 

The formula going (in one direction) from a limit ^ : hx—^hnK to 
a universal l.c.e. $ is <£> = 1Irx(lx)- The inverse formula would require 
more notation. A limit functor LD: 6*—>cll! is a limit object of the 
diagram in Cat(C*, 'll!) consisting of D followed by left regular repre­
sentation. The colimit functor RD is a limit object of a similar dia­
gram. The colimits in the functor categories are less interesting in 
themselves, but they show the following. 

2.1. The limit functors on a category with a set of objects are precisely 
the conjugates of groundings. 

PROOF. Every limit is a conjugate. For, given D, define R°i>: 6—>cll! 
as follows. Each value R°D( Y) is a disjointed union of the sets hDiI)( F) , 
as i" ranges over the objects of £>, reduced by identification of all pairs 
f:D(J)->Y, fD(e):D(I)->Y. Note that the notation f:D(J)->Y 
must be read carefully; J matters as well as D(J). For a map 
pG&(Y, Z), R°D(p) takes the equivalence class of/: D(J)-+Y to the 
equivalence class of pf. Consider the values of the conjugate functor, 
^ ( I ^ H o m t R S ) , hw). Given an element $ : i ^ - ^ , define for 
each object I ol D the map &(I)ÇihwD{I) which is the value of 
<ï>D(i) on the equivalence class of the identity 1: D(I)—*D(I). By 
routine checking, the values 3?#(Z) determine $ and natural!ty of $ 
is equivalent to conicality of 4>#. Finally, since both LD and R°D* take 
maps a: V-+W to multiplication by a, we have a natural equivalence. 

2 "Direct" for emphasis. The dual is coproduct. 
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To conclude, limits are the same as conjugates of functors R°D. If 
G has a set of objects, it is a simple exercise to verify that every 
G: e - » ^ ! is an R% proving 2.1. 

Inspection shows that R°D is a colimit object of the diagram in 
Cat (6 , cli!) which is the composition of D with the right regular 
representation of 6. Thus every grounding is a colimit of principal 
groundings. We shall need to apply a variant of this result: 

2.1.a. Every ordinary cogrounding on a small category is a colimit of 
a small diagram in the principal cogroundings. 

I t may be noted that the concept of limit was introduced by Kan 
[lO] in 1958, the equivalent concept of conjugate by me [ó] in 1960, 
and the equivalence was apparently unnoticed till now. In spite of 
the equivalence, both concepts seem to be justified. 

Every intersection of strict ideals in X is a strict ideal ; but an inter­
section of wide (or strict) subobjects need not be a wide subobject. 
For any map ƒ : W-+X, the smallest strict contravariant ideal in X 
including ƒ is the dominion of ƒ. If the intersection of all wide sub-
objects of X which include ƒ is representable, it is the left image of ƒ. 
The dual terms are codominion and right image. Since there are so 
many of them, and since the proposed terminology is all new, let us 
look at the "normal" relations of these objects before inquiring 
(2.4, 2.7) how well-behaved a category must be for the relations to 
be normal. The normal relations hold in particular in every equa-
tionally definable {primitive) category of algebras. 

(2.7) W-±C->L-*R->D->X. 

The domain W maps by a strict epimorphism q to the codominion 
C; every strict epimorphism that is an initial factor of ƒ is an initial 
factor of q. The maps C—»L and W-+L are epimorphic, and so are all 
the maps in the figure with range R. The dual statements are true 
too so, in particular, L-^R is bimorphic. Briefly, the peculiarity is 
that although L and D are constructed similarly by intersecting sub-
objects of X, and C and R are constructed starting from W> L comes 
out closer to W. 

Grothendieck [4] and Freyd [2] call L the image of ƒ and R the 
coimage. This seems to me mildly confusing on this level, and worse 
in some examples. 

The rest of this section concerns conditions for "normal" behavior 
of images. A monomorphism i, and the subobject it generates, are 
called extremal if every epimorphic initial factor k of i (i~jk) is an 
isomorphism; and dually. 

Suppose t h a t / : W-+X has both a left image m: L—*X and a right 
image e: W—>R. We have 
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(2.2) 

2.2. If i is monomorphic then there is a unique and bimorphic map 
t : L—+R preserving commutativity. If every map has a right image map­
ping monomorphically into the range, then every left image {that may 
exist) is an extremal quotient of the domain, and every right image is an 
extremal subobject of the range; and dually. 

PROOF. If i is monomorphic then the intersection w i s a multiple 
of it, m— it. Here t is unique because i is monomorphic; t is mono­
morphic because it is monomorphic; tg — e because itg — ie\ t is epi-
morphic because tg is epimorphic. If every map has a factorization 
(e.g. over a right image) monomorphism-epimorphism, then g does; 
since m generates the smallest subobject of X including/, the mono­
morphic factor of g must be isomorphic, and g is an extremal epi-
morphism. Similarly, since e generates the smallest quotient of W in­
cluding ƒ, the monomorphism i must be extremal. 

Freyd [2] calls a category "left complete," and we shall call it left 
small-complete, if every small diagram (i.e. with small domain) has a 
limit. We need not one but three somewhat stronger completeness 
conditions, the strongest of which is that, besides left small-complete­
ness, every intersection of wide subobjects of an object is a wide sub-
object: left wide-completeness. Since intersections are limits, these 
notions and the intermediate ones coincide in the important case of 
well-powered categories, i.e. those in which each object has only a 
small set of wide subobjects. I t should be noted, too, that although a 
rich variety of examples illustrate the degrees of completeness and the 
necessity for strong completeness assumptions in some of the theo­
rems, all known examples seem artificial.3 

A category is left complete (left extremal-complete for emphasis) if 
it is left small-complete and every intersection of extremal subobjects 
of an object is representable. Fortunately this implies (2.4 below4) 
that these intersections are again extremal subobjects. Finally, a left 

3 Even the distinction between left and right completeness is not easy to illustrate 
with everyday examples. Gaifman [3] and Hales [5] have shown tha t the left wide-
complete category of all small complete Boolean algebras and complete homomor-
phisms is not right small-complete. The related category of all topological spaces and 
continuous open mappings is right extremal-complete but may not be right wide-
complete. 

4 Assuming the category has only a set of objects. 
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small-complete category is left strict-complete if every strict contra-
variant ideal is representable. (Since those defined by small sets of 
relations would be representable anyway, this is still an intersection 
condition.) 

The strengths of the four notions are " w i d e ^ ^ ' e x t r e m a P ^ ' s t r i c t " 
^ " sma l l . " This is obvious, using the known lemma [8] that every 
strict monomorphism is extremal. There is a sufficient condition for 
small-completeness (left or right) to imply strict-completeness that is 
weak and hereditary: embeddability in cll (stated in [8] for ordinary 
categories, bu t the proof [7] generalizes a t once). 

Instead of considering limits of certain diagrams one could look at 
conjugates of certain functors. We omit details, remarking that it is 
easy to find manageable characterizations of left small-completeness 
and left strict-completeness in these terms, but not the others. 

Obviously, the existence of left or right images follows directly from 
left or right wide-completeness. I t is known that one can prove exis­
tence and fairly normal behavior by approaching right images from 
the right (i.e. from the range; unlike the definition). We can strengthen 
the known theorem [8] by taking more pains with the proof. The 
somewhat elaborate machinery is going to be used more than once. 

A left multistrict analysis is an inverse mapping system {Xa ; fpa} 
indexed by an initial set of ordinal numbers, in which each bonding 
mapping fa+i,a is a strict monomorphism and each Xp indexed by a 
limit number is the inverse limit of its predecessors, with coordinate 
projections ƒ/?«. The inverse limit condition is equivalent to the condi­
tion tha t f po is an intersection of the preceding monomorphisms /«0. 
A multistrict monomorphism is a mapping appearing in some left 
multistrict analysis. 

2.3. Every multistrict monomorphism is an extremal monomorphism. 
PROOF. We may suppose the given mapping occurs as /«o in a left 

multistrict analysis {Xa\ //3«}. By remarks above, it is a monomor­
phism. Suppose fao = ge, where e is epimorphic. We prove inductively 
that for each /3 there exists g$ such that f^g$ = g. Note that this holds 
for j3 = 0; that g$ will be unique, since f^ is monomorphic; and that 
gpe will be fa?, sincefpogpe = ge =fao =JW«* To get from j8 to j3+1, every 
equation hfp+i,p = kfp+i,p implies hg^e = kg^e] hgp^kgp; therefore g$ is a 
multiplefp+i,pgp+i of the strict monomorphism/p+i./s. At a limit ordinal 
7, the preceding g$ are the coordinates of the required mapping gy, 
and the induction runs. Finally, since faogoce = ge=fao1 gae is an iden­
tity. As e is epimorphic, it is isomorphic, which was to be shown. 

2.4. THEOREM. In a left complete category which has only a set of ob­
jects, every mapping has a right image, which maps monomorphically 
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into the range; every extremal monomorphism is multistrict, so that com­
positions of extremal monomorphisms are extremal; and intersections of 
extremal subobjects are extremal subobjects. The right image of a mapping 
is the smallest extremal subobject that includes it. 

PROOF. Given ƒ : X-* Y, we construct a multistrict analysis induc­
tively, factoring ƒ—m^fp across m^\ Yp-+Y. Each bonding mapping 
W/3+1,/3 is chosen as a monomorphic generator of the dominion of f&. 
In this construction, objects Y$ may be repeated, but the maps m^ 
are all different, until ma+i,a is an isomorphism. This can happen only 
when fa is epimorphic. For any factorization f=ge, where e is epi-
morphic, g factors through every mpo, by a routine induction. Then e 
is a factor of ƒ«;ƒ«: X—»Fa is a right image of ƒ, and Ya is a mono-
subobject (and extremal, by 2.2) of the range. 

In case ƒ was an extremal monomorphism, the epimorphic factor 
fa is an isomorphism and ƒ is multistrict. For a composition, juxta­
pose analyses. 

For an intersection of subobjects of X generated by extremal mono­
morphisms ma, there is (by left completeness) a monomorphic gen­
erator n. Factor n = pe across its right image e. We have also factor­
izations n — maUa\ and by the same sort of induction as in 2.3, 
p = mava- Hence p is a lower bound for all ma and must factor across 
n, p = nf=pef. Then ef is an identity. Since e is a right factor of n, 
it is monomorphic; as a monomorphic left factor of an identity, it is 
isomorphic, and n is extremal. 

For the final assertion, it is obvious from the construction that the 
right image is the smallest including multistrict subobject. We re­
mark that this assertion can be proved without multistrict analyses 
whenever, besides the hypotheses in 2.2, one knows that composi­
tions of extremal monomorphisms are extremal. 

2.5. COROLLARY. In a left wide-complete category having only a set of 
objects, every mapping f factors across its left and right images, f=abc, 
where c is an extremal epimorphism, b a bimorphism, and a an extremal 
monomorphism. 

The right image comes from 2.4, the left image directly by inter­
secting, and the rest from 2.2. The factorization theorem in [8] gives 
the information in 2.4 and 2.5 for well-powered categories. I t is not 
known even in that case whether extremal epimorphisms are multi-
strict, or compose, or intersect. 

2.6. REMARK. Of course 2.4 and 2.5 do not require completeness. 
The limits involved are subobjects; the properties used might be 
called "completeness downward." The next results 2.7 and 2.8 are 
implied by completeness downward, and 2.9 can be adapted, trivially, 
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to a criterion for completeness downward. Similar remarks apply, 
without difficulty, to several later results. 

2.7. THEOREM. In a complete category having only a set of objects, 
the factorization (2.7) is functoriah 

PROOF. The objects of the domain category of the factorizing 
functor S are short diagrams ƒ: W—>X in 6, or for short, ƒ. Maps 
«:ƒ—>ƒ are natural transformations of diagrams, which amount to 
pairs of maps ot\: W—+W', a2: X—>X', with f ai = a2f. S (J) is a diagram 
(2.7), unique up to an equivalence of diagrams inducing the identity 
on the subdiagram W—+X. We wish to define S (a) : S(J)—>S(J') so as 
to induce a on the subdiagram ; this means precisely to construct 

m 
W-*C-*L-*R-+D->X 

4, i J. 4, J, 1 OL2 

w-+ c -> v -» £'-> zy->x', 
commutative, with the boundary of the picture consisting of the data 
S(jQ» S(f'), a. Consider the strict subobject of X' generated by 
D'—*X', which is defined by some family of equations h\g = k\g. We 
have, for all X, h\f = k\f, whence h\fai = k\fai, h^f^k^f. Since 
m generates the smallest strict subobject of X including ƒ, h\a2m 
= &xa2w, and a2m factors across D'. The rectangle DX' is commuta­
tive by construction; the rectangle WD' is commutative since 
D'—*X' is monomorphic. Now insert the dominions D2 of W—>£>, 
Di of W—+D'. By the same proof, there is a connecting map D2-+DI. 
By an obvious transfinite induction, one arrives finally at R-+R'. 
Duality yields C—^C' and L—±L!. Finally, 5 is functorial because the 
placement of epi- and monomorphisms assures that the diagram-fill­
ing problem has only one solution. 

If one specializes the diagram in the foregoing proof by assuming 
isomorphisms in several places, one gets a number of corollaries, most 
of which are uninteresting or evident. There is a curious exception. 

2.8. COROLLARY. In a left strict-complete category, iff: W-+X is an 
initial factor of a strict monomorphism, then W is a retract of the do­
minion of f. 

PROOF. Left strict-completeness yields dominions and the map 
connecting them in 2.7. Then if W—>W'—>D' is an isomorphism, 
W-+D has a left inverse. 

The two-step multistrict monomorphism ƒ need not be strict, even 
in the category of semigroups (5.1). 
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For each of the four degrees of (left) completeness, there is a test 
somewhat more convenient than the definition. For left small-com­
pleteness, it is simply that every small family of objects has a product 
and every coterminal pair of maps an equalizer ( = limit, for a co-
terminal pair) [2]. For left strict-completeness, every small family 
has a product and every strict contravariant ideal is representable. 
For left wide-completeness, I am not sure the test can be useful, but 
it seems likely; it is simply that instead of intersecting a structureless 
family of subobjects {ma\ a(EA }, one can well-order A and use the 
descending chain of partial intersections Ç[ {ma:a<l3}. Finally: 

2.9. A left small-complete category having only a set of objects is left 
complete if {and only if) every left multistrict analysis has a limit. 

The routine, bu t tedious, proof will be sketched. All strict contra-
variant ideals are representable, by a multistrict analysis along initial 
segments of a well-ordered set of defining relations. This justifies the 
beginning of the proof of 2.4. Then, noting that small intersections 
are representable, and proving along the way that intersections are 
(1) extremal and (2) multistrict, one gets every intersection of ex­
tremal subobjects from a multistrict analysis. 

The "set of objects" condition in 2.4-2.9 is, of course, no hindrance 
to using the results for any legitimate purpose. However, we have 
illegitimate purposes in mind, in functor categories (for example). 
Note, therefore, that it suffices to assume that each object has only 
a set of wide subobjects; in that case we call the category set-powered. 
Its subcategories are another matter. 

3. Retracts and adjoints. Though functor categories will occur in 
this section, all categories not named as functor categories are as­
sumed to have only a set of objects. This will cost something later, 
when we must refer back to proofs; but not much. 

3.1. THEOREM. If (B is a subcategory and a retract of C, then every 
diagram in (B having a limit in 6 has a limit in (B. 

REMARK. We cannot simply say "retractions preserve limits" (5.2). 
One might say "retractions cherish limits." 

PROOF. Let a: <B—»(B be a retraction. Observe that every idem-
potent map k: X—>X in (B splits, into factors r: X-+R, i: R—»X, such 
that ir = fe, ri = 1R. For k splits in 6, into p : X—»P, 1 : P—>X. (To prove 
this let 1 be an equalizer of k and l x and factor k across it.) Then if 
r = a(p), i=a(i)1 ir is a(ip) =k and ri is a(pt), an identity. 

Now, given a diagram D: £>—><£ having a limit (X, <£>: Kx~*D) in 
<5, we shall show that D has a limit in (B. Let a(X) = F. We have maps 
(for each object A of £>) <X($A) = J J A : Y—>D(A) in (B. Since a is a 
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functor, H is a natural transformation from Ky to D and is induced 
by a unique mapping ir: F—»X in ©. Let a(7r) = £ : Y—>Y. For every 
mapT : T—>X in 6 such that all $AT are in <£, <£AT = a(<kOa(r) = XIA « (T) 

==$A7T«(T) for all A; thus 7TCK(T) induces the same transformation 
(KT-*D) asT, 7ra(r) = r . Hence £a(r) =a(7roj(r)) = a ( r ) . In particular, 

Consequently, p splits as ir in (B, where n is an identity 1^. We 
claim that the natural transformation from Ku to D defined by the 
mappings YLA * '1S a limit of D (in (B). Considering the limit 3>, we 
need only show that given r : T-+X such that all $>AT are in (B, there 
is a unique £: T—+U in (B such that mt=r. One such £ is ra(r ) ; for 
irira(j) =Tpa(r) =7ra(r) = r . Moreover, if / ' ^ j in (B, wit'?*rit since 
a(irï)=pi = iri = i, a monomorphism. This completes the proof. 

I t follows, of course, tha t retracts of strict-complete categories are 
strict-complete. One cannot substitute "complete" or "wide-com­
plete" (5.3, 5.4). 

For constructing retractions one naturally looks first to the adjoint 
functor theorems. We take the notions of adjoint and coadjoint as 
known [12]; but we reformulate the definition, to clarify the gen­
eralization coming up. Given F: <3—>3D, we consider the left regular 
representations LT: T—»Cat(r*, ^ î ) for T = C, 3D, and the functor 
L(F) ("Cat(F*, Oil)") from cogroundings J of 3D to cogroundings J F 
of 6. We call a diagram of categories and functors type-commutative 
if every two functors PiT—>A, Q:T—>A obtained by following the 
arrows are naturally equivalent. Then G: 3D—»© is coadjoint to F if 

G 
> 

L£> i I L& 
L(FT 

is type-commutative. Tha t is, up to a natural equivalence, L{F)L^ 
goes into principal functors. I t is obvious that this happens if and 
only if L(F)L^ goes into representable functors (each hxF: G— «̂U! is 
representable) ; and it is known5 that this is equivalent to the two-
variable definitions; 3D(F( ), ) and G( , G( )) are naturally equiv­
alent. We shall exploit an advantage of that definition by sometimes 
referring to the adjoint F as the left adjoint, or to G as the right 
adjoint* 

6 [12, Proposition 8.3]. One might as well deduce this from the isomorphism be­
tween Cat(SD, CatCe*,^!)) and Cat(SDxe*,Ol!). 

6 Another useful mnemonic: F and G are adjoint in that order if G is the standard 
Grounding of a category of sets with structure and F takes sets to the Free objects 
they generate. 
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Of course, one actually finds (right) adjoints locally, by showing 
that each hyF is representable. We need to justify the method not 
only for adjoints but for partial adjoints. A pre-coadjoint G of F: 6—»3D 
is a functor defined on the full subcategory & of 2D whose objects are 
exactly those X for which hxF is representable, taking it into 6, such 
that LQG and L{F)L^\ Cfc are naturally equivalent. 

We could prove the existence of pre-coadjoints (the first one-
twentieth of Theorem 3.9) at once. As the reference "3.9" suggests, 
there are several other things before that. Many of them concern 
definitions. 

We call a (partial) functor G: Q—»6, where d is fully embedded in 
3D by I : Ct—>2D, left conservative in 3D if for every diagram E: 8—>Q, 
such that IE has a limit (X, $ : KX-*IE), (1) if GE has a limit, then 
X is in 1(d), and (2) if X is in /(<$), so that <E> comes from \£: KA—*E, 
then the induced left conical extension Cat(8, G) (^) : K QW^GE is 
universal. G is left conservative if it is left conservative in its domain, 
i.e. it preserves all limits. (The relative notion may be paraphrased: 
I and G together reflect limits, and G preserves whatever limits I 
preserves.) G is left small-closed if its domain is left small-complete 
and G preserves limits of small diagrams; and left strict-closed, left 
closed, left wide-closed have obvious parallel definitions. 

If (B is a subcategory of G and the embedding functor is left small-
closed, we call (B an essentially left small-closed subcategory; for (B to 
be a left small-closed subcategory we require further that every iso­
morphism in 6 whose domain is in (B is in (B. This is a little tricky. The 
left small-closed subcategories are well-behaved, being those sub­
categories <B such that every limit of a small diagram in (B exists and 
belongs to (B. Thus they are closed under intersection, and one could 
define a left small-closure. But one should not use the notion without 
realizing that the adjunction of isomorphisms can destroy the struc­
ture of a subcategory. 

For full subcategories there is no such difficulty. Two subcategories 
embedded by I: Ct—»G, J: (B—»<B are equivalent in 6 if there exist 
functors S: Œ—xB, T: (B—*Cfc such that ST and TS are naturally equiv­
alent to identities, JS naturally equivalent to ƒ, and (therefore) 
IT naturally equivalent to ƒ. 

3.2. Every essentially left small-closed full subcategory of a category 
6 is equivalent in Qtoa unique left small-closed subcategory, which is full. 

The proof is easy and is omitted. Moreover, with the parallel defini­
tions for (essentially) left strict-, or (extremal-), or wide-closed sub­
categories, the results parallel to 3.2 are equally easy. 

As an intersection of full subcategories is full, there are full closure 
operators. But two remarks are needed. As to wide-closure, while 
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monomorphisms depend on the category, the notion is absolute for 
essentially left small-closed subcategories; for ƒ : X - > F is mono-
m orphie if and only if the left conical extension of 

ƒ ƒ 

by -X" (with lx, ƒ, lx) is universal. As to extremal-closure, one can 
use 2.9; but there is more to be said. 

Even a full left small-closure cannot be formed by simply adjoining 
limits (once). If ® is a full subcategory of 6, we define an d-sesqui-
strict monomorphism ƒ: X—»F as a strict monomorphism representing 
a subobject defined by a set of relations haf=kafy where ha and ka 

are coterminal maps with domain Y and with range Aa in a. An 
d-multistrict monomorphism is a multistrict monomorphism occurring 
in a left multistrict analysis all of whose immediate bonding maps 
/a+i,<* are Œ-sesquistrict. 

3.3. The full left closure of a full subcategory Q, of 6 (assuming d 
lies in some left closed full subcategory) has for objects the d-multistrict 
subobjects of small products of objects of d. 

The only nontrivial point of the proof is in verifying closure under 
products, and that is not hard. 

3.3.a. Parallel results hold, by parallel proofs, for small- and strict-
closure. For the strict-closure, the multistrict analyses must have 
small length; for the small-closure, further, the bonding sesquistrict 
monomorphisms must have small sets of defining relations. 

Describing the left wide-closure is harder, and we will not need it. 
Extremal-closure is closely related to the notion of generating. An 

object X of a category 6 is called a generator if for every monomor­
phism m: Y-+Z tha t is not an isomorphism, there exists a m a p X - » Z 
not (left) divisible by m. Restating, not all of Hom(X, Z) is divisible 
by any such m. Given suitable completeness, there is a "universal" 
map s:2--»Z, where S is a coproduct of copies of X indexed and 
mapped by the elements of Hom(X, Z) ; and generating means that 
5 is an extremal epimorphism. In general, a set S of objects of G, or 
a subcategory S on the objects of 5, generates Q if for every Z in 6 
there is a small subset R of S such that not all maps from objects of 
R to Z are a t once divisible by a monomorphism m\ Y—^Z that is 
not an isomorphism. (The requirement that R be small is an innova­
tion, I think, but large generating sets have been little used. We need 
R small for the next proposition.) 

3.3.b. A right complete locally small category 6 is generated by a 
full subcategory d if and only if 6 is the full right closure of Ofc. 

The proof offers no difficulty. This notion, like all current one-
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sided notions of d "sufficing" in 6, is not transitive; if (X generates 
(B and (B generates C, Ofc need not generate 6 (5.7). I t is the same (5.7) 
with a related notion going beyond wide-closure. A subcategory (B 
of 3D, or its set of objects, is called separating if for every coterminal 
pair of distinct maps ƒ, g: X—*Y in 3D there exist Z in a small part 
5 ( F ) of (B and A: F—»Z in 3D such that hf^hg. These relations are 
nevertheless of crucial importance, a t least in the present state of 
knowledge, because of their role in the Special Adjoint Functor Theo­
rem. For that theorem (3.12) we want an obvious kmma. 

3.3.C. A locally small left small-complete category 3D is separated by 
a subcategory (B if and only if every object of 3D maps monomorphically 
into a small product of objects of (B. 

We will want the total closure properties: (BC© is essentially left 
universal if its embedding is left conservative and every diagram in 
(B having a limit in 6 has a limit in (B, left universal if it also contains 
all isomorphs and all isomorphisms of its objects. Because of the 
pullback criterion for monomorphisms 

ƒ ƒ 

a left universal subcategory of a left wide-complete category is left 
wide-closed. 

We call a subcategory left conservative if its embedding functor is 
left conservative. The full left context of a subcategory (5fc of G is the 
largest full subcategory with respect to which (£ is left conservative, 
consisting therefore of all X such that for every universal left con­
ical extension (L, $ : KL~*D) of a diagram D in Ofc the induced map 
Hom(i£x, K'L)—*Hom(2£x, D') (the primes mark the diagrams as 
considered in C) is invertible. 

3.4. THEOREM. The full left context of any subcategory is right uni­
versal. 

PROOF. Let R, <£: E—*KR be a colimit of a diagram E in the full 
left context (B of a subcategory a ( E : 8 - » e , E(8)C(B), and L, >F: 
K'L-^D a limit in a of a diagram D: 3D—>a; Kf

L is, of course, the L-
valued constant functor on 3D. Let A: K'R—>ID be a left conical ex­
tension of D considered in 6(7: CfcCG, AGHom(Xu, ID)). The maps 
AX(X in 3D) and $Y(Y in 8) have compositions A x * r : E(Y)~-*D(X), 
natural in X and F. (Formally, we are backing up the diagrams to a 
common domain 3DX8.) Since each E(Y) is in (B, the left conical ex­
tension (A*)r: K'E{Y)—*ID defined by ((A4>)r)x=Ax*r factors 
uniquely across L, by fy: E(Y)—*L. Because of the uniqueness, 
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f:E—*KL is right conical (natural). Hence there is a unique map 
g: R-+L such that g * r = / y for all Y in 8. Then ^fxg&r =Ax3>r for all 
F, so that ^ x g = Ax. Retracing steps, no other g can satisfy >Fxg =Ax 
for all X in 3D; SF is universal for i?, and R is in (B. 

3.5. COROLLARY. The intersection of the full left context of a subcate­
gory Ct with any full subcategory $ containing (X is right universal in 9\ 

For the intersection is the full left context in 2F. Note that the 
smallest full subcategory containing d and satisfying 3.5 may be 
much larger than the right universal closure of Ct. Of course, the con­
text need not contain Ct if Ct is not full. 

3.6. COROLLARY. A left complete full subcategory is essentially left 
closed in its full right universal closure, and similarly for "small-com­
plete," "strict-complete," "wide-complete." 

For the embedding is left conservative. One could state more as in 
3.5, bu t the whole Theorem 3.4 after all has a simpler statement. 3.6 
will serve as a lemma for 3.7. 

A category 6 is a completion of a full subcategory Ct if 6 is com­
plete and every complete full subcategory of G containing Ct is dense, 
i.e. equivalent in 6 to C, A normal completion of Ct is a complete 
category 6 containing Ct as a full subcategory whose full left closure 
is G and whose full right closure is 6. 

3.7. A normal completion is a completion. A completion 6 of Ct is 
normal if and only if every intermediate left or right complete full sub­
category is dense ; also, if and only if every object of G is both an extremal 
quotient of a small coproduct of objects of Ct and an extremal subobject 
of a small product of objects of Ct. The embedding in a normal completion 
is left and right conservative. 

PROOF. If 6 is a normal completion of Ct, then any left complete 
full subcategory containing Ct has (also) right closure G; by 3.6 and 
3.2, it is equivalent to a left closed full subcategory containing Ct, so 
it is dense. The dual holds likewise and the converse is trivial, as 
are the implications "Ct-multistrict,,=»"multistrict?,=>"extremal.,, 

The converse implications follow from 2.4 and from transporting 
defining relations haf=kaf, for ha: Y—>Z, by monomorphisms 
m: Z-+P where P is a product of objects of Ct. The last assertion fol­
lows from 3.4. 

3.7.a. The same for strict-completion, small-completion, with ap­
propriately restricted multistrict analyses. 

3.7.b. If C is a normal completion of Ct, the double regular envelope 
(X—>Co(Ct, ^ î ) can be extended to a full embedding of 6, unique up 
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to natural equivalence. The proof is a routine transfinite argument. 
The more interesting question of where the normal completions are 
in Co(Ct, 'II!) is for the sequel. 

3.8. A normal completion of an ordinary category Ot is equivalent to 
an ordinary category. In fact, if Œ is a generating and separating full 
subcategory of 6 then C is locally small if & is and ordinary (up to 
equivalence) if & is. 

PROOF. An extension 6 of a locally small category a is locally small 
whenever every object X is both an epi quotient of a small coproduct 
of objects of d and the dual; for every set Q(X, Y) then can be 
mapped one-to-one into a small product of sets d(Xa, Y$). As for 
objects (Ot ordinary now), there are only oo different small co-
products C of objects of Ct and only oo different small products P of 
objects of Ct. For each C and P , consider the objects Xa for which 
there exist an extremal epimorphism ea: C—±Xa and a monomorphism 
ma: Xa—*P. The compositions ƒ« = maea are only a small set of differ­
ent maps in G(C, P ) , and Xa is determined up to isomorphism as the 
right image of ƒ«. Thus there are only oo objects in all, i.e. 6 has an 
ordinary skeleton. 

3.9. THEOREM. Every functor F: e—>£> has a pre-coadjoint G: a~»e, 
which is unique up to natural equivalence and is left conservative in 2D. 

PROOF. By the definition of the domain GL for a pre-coadjoint, 
L(F)L^\ A goes into representable functors; thus it is naturally equiv­
alent to a map into principal functors, which factors across G. The 
result is unique up to a natural equivalence in L(o((B), which is (full 
and) isomorphic with (B. Given a diagram E: 8—>0t such that IE 
(where i": & C 3D) has a limit object X, assume (1) that GE has a limit. 
Thus hosK is representable. For X to be in Ct requires represen tabil-
ity of hxF, or its natural equivalent hiEK'F. (Here K: 6—»Cat(S, (3), 
K' : 3D—>Cat(8, £>).) We want a natural equivalence $>: hiEKfF-±hQEK. 
We have a natural equivalence ^f: L(F) [L^\ d]E—^L(oGE. I t remains 
to pick them to pieces and identify 3> with SF. St" breaks down into 
maps i&u'. hEiU)F—>hoE(U)(U in 8), and these into ^UT'. Hom(P(P) , 
E(Z7))--+Hom(r, GE(U)) (T in C). For * we need functions * r : 
Hom(ü:j-(r), IE)->Hom(KT, GE). Then for each a: K'F{T)-»IE we 
need * r ( a ) : KT->GE. We have av: F(T)-*E(U); put [$T(<X)]U 

~^UT(OLU)* Then $T(OL) is a map because ^ is natural in U, <£r is a 
function because so defined, $ is a map because ^ is natural in T. 
$ is invertible by formula, [^^(Mu^^dKPu), where this is a two-
sided inverse by calculation. 

For (2), we are given X in 1(0) = Ct, in this case, and required to 
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show that the universal left conical extension X: Kx—>IE, viz. 0x(lx) 
for a natural equivalence d:hx—*hiEK', induces a universal left 
conical extension \x of GE by fiu=

:GCKu):G(X)^GE(U). Now ftx^ 
is naturally equivalent to ho(X) by A: ho(X)-*hxF. Thus <3>L (F)(0) A: 
hom-^hoEK represents the limit, and [*L(i^)(o)A](?(x)(l(?(X)): KQ^X) 
—>GE is universal. Is it /x? One must go back to the common source 
of A and ^ in Q: L(F)L^\ ®—>LQG) A can be chosen as fli1 and ^f 
so that ^u^tiuiu) for all U. Then the verification is routine, and we 
omit it. 

From 3.9, if both 6 and 3D are left small-complete, then Ct is left 
small-closed in 3D; thus / : ŒC3D preserves monomorphisms and 
equalizers, whence G does too, and Ct inherits one of the three stronger 
properties if both C and 3D have it. If C and 3D do not both have repre-
sentable limits, G need not preserve equalizers; there is no difficulty 
in constructing examples (with 6 or 3D complete), as Gfc and F(Q) have 
little to do with each other. We note: 

3.9.a. Every pre-coadjoint functor preserves monomorphisms. 
I t is trivial to check that this is (1) true and (2) not a consequence 

of 3.9. 

3.10. ADJOINT FUNCTOR THEOREM. A left strict-closed functor 
G: 3D—*6 has an adjoint if and only if every functor hxG: 3D—»cll! (X in 
6) is properly generated. 

This is substantially Freyd's theorem [2]. Lawvere [ l l ] made non-
trivial improvements, and it is a trivial matter to adapt Lawvere's 
proof to the present definitions and conventions. Nevertheless the 
first draft of this paper contained a somewhat shorter proof. But the 
same proof is given in a preprint, Adjungierte Funktoren und primitive 
Klassen, which W. Felscher sent me in the meantime. 

What will guarantee tha t the hxG are properly generated? One 
can restate the condition for some gain (3.11) ; one can put bounded-
ness conditions on 3D that are more stringent but more transparent 
(3.12). And then, one can do a little more if G is a full embedding. 
The next two results are basically Freyd's, though our formulation 
of the Special Adjoint Functor Theorem 3.12 goes substantially 
further. 

Relative to G: 3D—>(B, an object X of 6 is said to generate F£3D if 
there is a mapping f:X—>G(Y) such that whenever ƒ factors as 
G(i)f, where i is a monomorphism into F, i is an isomorphism. Thus 
the objects generated by X relative to the identity are its extremal 
quotients. 

3.11. A left wide-closed functor G: 3D—>G has an adjoint if 6 is locally 
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small and each object of C generates only a small set of non-isomorphic 
objects of 3D relative to G. 

PROOF (FREYD) . If { F«} is a maximal set of nonisomorphic objects 
of 3D generated by X, then hxG is generated by the small set of all 
maps from X to all G(F«). For, given a map g: X-*G(Z), let i: Y-+Z 
be a monomorphic generator of the intersection of all subobjects of 
Z generated by monomorphisms j such that G{j) is a left factor of g. 
Then G(i) generates the corresponding intersection, so that g factors 
as G(i)f. Hence X generates Y. 

There is a corresponding result where 3D is merely left complete but 
each X must have few maps to objects G(F) which fail to factor 
through proper strict subobjects, relative to G. 

3.12. SPECIAL ADJOINT FUNCTOR THEOREM. A functor G: 3D—>e 
with locally small domain and range has an adjoint if G is left closed and 
3D is cogenerated by a small subcategory, or if G is left wide-closed and 3D 
is separated by a small subcategory. 

PROOF. We have expressed the hypotheses mostly in familiar terms 
(weaker, though, than the terms in [2]), but the assumption that 3D 
is locally small has nothing to do with the theorem. Its purpose is to 
mediate the equivalences of 3.3.b, 3.3.C. In either case of the theorem, 
then, we have a distinguished small set of objects Ya in 3D, and, since 
6 is locally small, U« e (X, G(Ya))=L= {fa} is small. Let P be a 
product of the objects Ya = E\, each F« occurring once for each 
h\\ X-+G(Ya). Let h: X—>G(P) be the mapping with X-th coordinate 
h\ for all X. 

For the first part of the theorem, let m: S-*P be an intersection 
of all the extremal monomorphisms n into P such that G(n) is a left 
factor of h. Then G(m) is itself a left factor of h = G(m)j. We claim j 
generates <2>(X, G( )). (Actually we need not appeal to 3.10; since 
j factors through no proper strict subobject of P relative to G, 
G(f)j = G(g)j implies ƒ =g . We need this later in the proof.) Consider 
any object F of 3D and any element y of 6(X, G( F)). F is a multistrict 
subobject of a product Q of factors F^ each of which is a F«; let 
i = i$o- Y—>Q be a monomorphism with left multistrict analysis 
{Qe'i iy&}> (?5= F, Qo = Q. For each coordinate index n of Q, the ji-th 
coordinate of G(i)y is some h\ÇzL; let X=A(JU) . Let u: P—*Q be the 
mapping whose /x-th coordinate is the A(jit)-th coordinate projection 
of P , for each /x. Then G(u)h — G(i)y, since they have the same co­
ordinates. Thus we have v0 = um; 5—»Q0 such that G(v0)j = G(i)y. 
Moreover, we can factor v0 across isoby the following induction. Hav­
ing factored v0 as ieoVp, consider any pair of maps a, b of Qp to Z 
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such that aip+i,0 = bip+i,8> Since G(i^) is a monomorphism, we have 
G(v{ùj = G(iw)y. Now G(a)G(iw)y = G{b)G(iw)y, so G(avp)j = G(bv&)j\ 
therefore avp — bvp, and vp factors as ip+i,0Up+i, v0 = ip+i,0vp+i. At a limit 
ordinal we merely note that v0 belongs to the intersection of the pre­
ceding mono subobjects of Q0. Finally, we have v&: S-+Y> y = G(vt)j. 
This completes the first part. 

For the second part, let m0: So->P be an intersection of all the 
monomorphisms n into P such that G(n) is a left factor of h. Again 
h = G(mo)j. Again we need to show that every z: X—>G(Z) h a s j as a 
right factor. This time Z maps by a monomorphism k into a product 
Q of factors PM, each of which is a Ya. Again the jtt-th coordinate of 
G(k)z is some fe\£L, X=A(ju). We have u: P-+Q as before; now we 
note that u factors as //, where t projects P upon a partial product 
P i and I: Pi—>Q is a monomorphism. As before, G(lt)h = G(k)z = r. 
Thus k and I are two monomorphisms into Q such that G(k) and 
G(l) are left factors of r; there is an intersection i: I—>Q, with mono­
morphisms a: I-^Z, b: I—»Pi, and a mapping c: X—>G(I), such that 
ka = lb—iy G(i)c = r. In particular, since G(l) is monomorphic, G(&)c 
— G(t)h. Now note that P is a product of P i and a remaining factor 
P2 , with second coordinate projection s: P—*Pz. Let d be the mapping 
from X to G(IXP2) =G(I) XG(P2) with first coordinate c and second 
coordinate G(s)h; let w be the mapping &X1 from IXP2 to P1XP2 
= P . Then w is a monomorphism, since its factors are. G(n)d: X 
—>G(PiXP2) has first coordinate G(b)c = G(t)h and second coordinate 
G(s)h; so G(n)d = h. Therefore w is a left factor of rn0 = ne. If/: I X P 2 
—•ƒ is the first coordinate projection, we now have G(k)z = G(lt)h 
= G(ltmo)j = G(ltne)j = G(lbfe)j = G(kafe)j. Since G(fe) is monomorphic, 
z = G(afe)ji as required. 

As Kan observed in 1958 [ l l ] , the limit functors that one wants to 
represent for completeness are closely related to the functors one 
wants to represent for adjoints, and small-completeness can be de­
fined in terms of adjoints. By 1964 Freyd [2] and I [8] had noticed 
that there is a crossover, left complete—>left adjoint—night complete 
(saving boundedness problems. Note that [8] contains no adjoint 
functor theorem, only fragments relevant to this question. Both [2] 
and [8] contain substantial kernels of the theorem below, 3.15). An 
amalgamation of a family of objects Xa is an object Y with maps 
fa: Xcr-^Y such that no strict or represen table proper contravariant 
ideal in Y includes all ƒ« in its values. From [8], an ordinary left 
wide-complete category in which each small family of objects has 
only a small set of amalgamations (up to isomorphism) is right strict-
complete. Having additional concepts available, we can note that 
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"locally small" can replace "ordinary," with the same proof, and 
that the category must be right complete because extremal quotients 
are simply amalgamations of a one-member family. 

3.13. LEMMA. In any category, a family of maps fa: X-*Za can be 
factored in at most one way (up to isomorphism) as gaq, where q: X—>Y 
is a muUistrict epimorphism and every two different maps into Y have 
different compositions with some ga. In a category with finite limits, a 
family of maps ƒ«: Xa—>Z can be factored in at most one way as iha, 
where {ha) is an amalgamation and i a monomorphism. 

REMARK. The obvious name for {ga} is "separation." 
The first part of 3.13 is proved by routine transfinite induction. 

For the second part, i generates a minimal subobject including all ƒ«, 
and given finite limits, it is the smallest. 

3.14. LEMMA. A locally small category G is well-powered if it has 
finite limits and a small generating subcategory. If <B has a small sepa­
rating subcategory, each object has only a small set of muUistrict quo-
tients; if it is also left small-complete, then each small family of objects 
has only a small set of amalgamations. 

REMARK. The two parts of 3.13 have a union which can be used 
for a small refinement of 3.14. We have no other use for the concept 
required to state it, so omit it. 

PROOF. Take the last assertion first. An amalgamation {ƒ«: Xa—»F} 
induces a one-to-one function from any set Hom(F, A) into the 
Cartesian product of Hom(X a , A). If {Xa} is small and a small set 
of ^4's separate, we have one small product Z into which every such 
F maps monomorphically, i: Y—>Z. By 3.13, {ifa} determines F, and 
there are only a small number of possibilities. The second assertion is 
proved in the same way, using the coordinates of i and the other half 
of 3.13. For the first assertion, given an object Z, every mono sub-
object of Z is an amalgamation of generators Xa, and a fixed small 
family can be used since YQZ induces Hom(X, F ) C H o m ( X , Z). 
Again 3.13 finishes it. 

3.15. THEOREM. A locally small left wide-complete category with a 
small separating subcategory is right complete. 

From 3.14 and the result quoted from [8]. Also from 3.14, the 
assumption that 6 is left small-complete with small generating and 
separating sets is stronger. I t implies more, 4.8 below. We can also 
deduce right completeness, and more, if G is left small-complete and 
has a small right adequate subcategory (4.7). There is an obvious 
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"average" hypothesis between 3.15 and 4.7, namely left complete­
ness and a small cogenerating subcategory. This, too, implies right 
completeness. The category is right small-complete by Kan's argu­
ment [lO] and 3.12. (Kan's argument: the colimit functors hDK to 
be represented are the constituents of a left adjoint for K: 6 
—»Cat(£>, ©). One readily checks that K is left and right conserva­
tive.) I t is then co-well-powered by 3.14. 

We are especially interested in adjoints of embedding functors. A 
subcategory 3D of 6 is called reflective (coreflective) if its embedding 
functor has a left (right) adjoint. 3.10-3.12 show that left closed 
subcategories satisfying boundedness conditions are reflective. There 
are many reflective subcategories (e.g. in abelian groups; see 5.5) 
that are nowhere near left closed. However: 

3.16. A reflective full subcategory of any category is essentially left 
universal and is a retract. 

PROOF. Let I: Ot— Ĉ embed a full subcategory and let R: ©—>0t 
(the reflector) be left adjoint to I. R takes each X of 6 to R(X) in a 
such tha t for each F in & there is a one-to-one correspondence $ x r 
of e(X, Y) with ®(R(X), Y) = G(R(X), F) . In particular, a certain 
map rx'- X—>R(X) corresponds to IR(X), and since <ï> is natural, there 
is for e a c h / : X—>Y ( F in a ) a unique/#=3>xy(/) such that / # f x = / . 
If X is a limit of any diagram ID: 3D—»(£•—><B, via a natural trans­
formation ty: Kx—*ID, then one readily checks that replacing each 
Vz: X->D(Z) with * f : R(X)-+D(Z) presents R(X) as a limit of ID. 
Thus & is essentially left universal. Finally, for X in ($, rx and l#x 
are inverse isomorphisms, so that there is a functor 1#: C5t—><3t such 
that 1*R: C—»& is a retraction. 

Let us take a brief further look at general adjoint functors. There 
is a sort of reduction to embedding functors and their adjoints, an­
nounced by Freyd [2] but considerably overstated by him. First the 
conclusion: under hypotheses like those of 3.12 but applied to both 
categories, a pair of adjoint functors C<=±£> can be factored across at 
least four "images" so that the factors are embeddings and (left or 
right) adjoints of embeddings. (One might say that Freyd under­
stated.) Unfortunately, adjoints of embeddings are only distant rela­
tives of epimorphisms. For each of the factorizations to be described, 
one of the embeddings is full, so that its adjoint may be chosen to be 
a retraction onto. 

Freyd used a preliminary transformation which he called an as­
sumption: the right adjoint G: $)—>G is one-to-one on objects. Evi­
dently we can secure this, without affecting adjoints, by embedding 
6 densely in a category having sufficiently many copies of each ob-
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ject and replacing G with a suitable natural equivalent. In this situa­
tion the set of all G(X) and all G(f) forms a subcategory of G, the 
quotient 3D/G; and G is factored into Q: £>-+£>/G and I : 3D/G-»e. 
Arguments sketched on page 83 of [2] show that QF and I are again 
adjoint functors; 3D/G is reflective in 6. 

Freyd went on to state that FI and Q are adjoint. This is false as 
often as not. Since adjoints compose, it would require G — IQ to have 
the adjoint FIQF—FGF, which must then be naturally equivalent 
to the given adjoint F. If G is a standard grounding, F a free-object 
functor, this means that every free object is freely generated by all 
of its elements. In fact the quotient is not one of the places a t which 
adjoint factorization is possible; if G is hT where T is the group Z2, 
the factor Q does not preserve the equalizer of the two maps from Z4 

to T. There is a similar result—one good factor, without any restric­
tion on the categories—at G($)), the smallest full subcategory of 6 
containing G(3D). Moreover, applying these remarks to F, we get two 
other places a t which half of the factorization can be done. 

If factorizations are arranged in order as in (2.7), £)/G gives the 
longest embedding one could hope to use. One of the factors below 
(3.18) is the longest possible adjoint of an embedding; thus when 
3D/G does not work, it is too far off center. The full subcategory 
G(3D) is much more central, and the commonest case in which it 
works is when it is dead center (coinciding with F (C)). This notion 
of center might repay study; what we have is a partially ordered set 
with a partially defined involution. 

How far out can one go and still get embeddings? 

3.17. THEOREM. If F: C—»£>, G: 3D—><B are adjoint functors, F is an 
embedding if and only if (5(30) is separating. 

PROOF. If G(3D) is separating, two different maps/*: C-+C' yield 
different maps hfi\ C—>G{D), which correspond adjointly to different 
maps ki\ F{Q->D. Also 1: G(D)-*G(D) corresponds to j : FG(D)->D, 
and lhfi to jF(hfi), by naturality. Thus \jF(h)]F(fi)9*\jF(h)]F(fà, 
F(fi) ** F(f2). Conversely, suppose F is an embedding (G a coreflector). 
By a simple (known [2]) computation, every F(C) is a retract of 
FGF(C), by e: FGF{C)->F{C) corresponding adjointly to 1:G^(C) 
-»GF(C), and F(m): F(C)->FGF(C), where m corresponds ad­
jointly to 1: F(C)-*F(C). Then m = F(m) is monomorphic in 3), so 
a fortiori in <B. 

3.18. THEOREM. Suppose G: 3D—-»© is a coadjoint functor with locally 
small domain and range, and either 3D has a small cogenerating subcate-
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gory and 3D and 6 are left complete, or 3D has a small separating sub­
category and 3D and 6 are left wide-complete. Then G can be factored into 
a coadjoint of an embedding and a coadjoint embedding. 

PROOF. On the second alternative hypothesis, note that since G 
preserves products and monomorphisms, it takes a small separating 
subcategory of 3D to a small separating subcategory Cfc of G(3D). The 
full subcategory $ of 6 on all wide subobjects of products of objects 
of & is left wide-closed, so é C <B is a coadjoint embedding by 3.12. The 
adjoint of 3D—»£f is the restriction to Ó of the adjoint of G, an embed­
ding by 3.17. The other alternative works similarly. 

The boundedness conditions in 3.18 are annoying, since (unlike 
3.12) it seems likely that they are nearly irrelevant. One can a t least 
provide other alternatives, since the dual approach, factoring F a t 
these places instead of G, uses different constructions. We omit that. 

3.19. THEOREM. Let 6 be a locally small, small-complete category 
that is left or right extremal-complete, and d a small full subcategory. 
Then d has a normal completion in C, upon which 6 can be retracted 
by composing a reflector and a coreflector. 

3.20. THEOREM. Every locally small completion of a small category is 
a normal completion and is well-powered and co-well-powered. 

These results leave open the possibility that a locally small minimal 
small-complete extension can be manufactured which lacks these prop­
erties. I have no example; but let us spell out a proposition on that. 

3.19.a. Suppose (lis a small full subcategory of a locally small, small-
complete category C. Then 6 is a normal completion of Ct, or Q, is con­
tained in a small-complete reflective or coreflective full subcategory that 
is not dense, or else some object of (B has a large {or extraordinary) set of 
multistrict subobjects and some object of 6 has a large set of multistrict 
quotients. In the latter case (1 does not separate or coseparate 6. 

PROOF OF 3.19. In case 6 is left extremal-complete, let (B be the full 
left closure of (1. By the Special Adjoint Functor Theorem, (B is re­
flective. By 3.14, (B is co-well-powered; so (B is right complete. Then 
dually, the full right closure S of G, in (B is complete and co-reflective 
in (B, and 8 is a normal completion of ft. The other case is dual. 

Now 3.20 follows from 3.19 and 3.14. So does 3.19.a. 
Define the reflectivizer of a subcategory (B of 6 as the domain of 

the pre-adjoint of the embedding I: (BC@; that is, the full subcate­
gory on the objects X for which hxI is representable. Evidently the 
reflectivizer is contained in the full left context of (B. 

3.21. The reflectivizer of a right complete subcategory 6, of a right 
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complete category is right closed, and its intersection with any right com­
plete full subcategory (B containing (X is right closed in (B. If a is full, 
it is essentially left universal in its full right closure. If all six occur­
rences of "complete," "closed," "closure" are modified by "small-," 
"strict-," or "wide-," the result still holds. 

PROOF. Most of this restates remarks after 3.9. For the full sub­
category (B containing d, its intersection with the reflectivizer is the 
reflectivizer of &CŒ- If $ is full, the reflectivizer contains it and its 
full right closure, and by 3.16 & is essentially left universal there. 

Summarizing 3.6 and 3.21: 
3.22. A left complete full subcategory is always essentially left closed 

in its right universal do sur e \ if the containing category is left complete, 
it is essentially right universal in its left closure. 

3.23. In a left complete category such that every left closed full sub­
category is a retract, every left complete full subcategory is a retract. 

For its coreflectivizer is a retract. 
But what categories are these? We shall not come near to any 

satisfactory answer, yet there are detachable parts of the problem. 
First, let us ask that the left closed full subcategories be reflective; 
there exist left closed, full, non-reflective retracts (5.6), but maybe 
they do not occur in familiar examples. (Maybe their existence even 
implies that some other left closed full subcategory is not a retract.) 
Next we can try to take a limit of reflections provided by 3.12. 

3.24. In a locally small left complete category, given a mapping 
r: X-+R, there exists a reflective full subcategory d including R such 
that r represents Q(X, ) if and only if for every g: X—>R there is a 
unique f : R-+R such that fr = g. 

We omit the routine check; Ct is the full left closure of R and 3.12 
applies. Call these mappings r reflection mappings. 

3.25. If f g is a reflection mapping and g is an epimorphism then f is 
a reflection mapping*, if also ƒ is an extremal monomorphism, then g 
is a reflection mapping. The full left closure of the union of a small set of 
reflective full subcategories is reflective. 

We omit the three routine checks. For the second one, one con­
siders right images. 

I t follows that if each object is the domain of only a small set of 
different reflection mappings (r: X~>R and s: X—»5 being considered 
different if they are not related by an isomorphism R—>S), then every 
left closed full subcategory is reflective. This seems a reasonable con­
dition, but little is known about it. By 3.25, one can factor out epi-
morphisms. Define a (reflective) frame of an object X as an equiva­
lence class of maps r : X—>R which are at once reflections and ex-
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tremal monomorphisms, equivalents being left multiples by isomor­
phisms, 

3.26. In a locally small left complete category, if every object has only a 
small set of wide quotients and a small set of frames, then every left 
closed full subcategory is reflective. Consequently every left complete full 
subcategory is a retract (coreflection of a reflection) and is right strict-
complete if the given category is right strict-complete. 

I do not know whether Z has a small set of frames in the (small 
abelian) groups. I t has more than continuum-many, by taking weak 
or strong direct sums of suitable families of subgroups of Q. 

Suppose we assume (third) that the left closed full subcategories (B 
of G are right small-complete. This amounts to assuming that two-
thirds of the problem is solved, for a (B-coproduct of objects Ba is the 
same thing as a reflection of their G-coproduct, and similarly for co-
equalizers. At any rate the assumption this time is a necessity rather 
than an over-strong convenience, and the remaining piece of the prob­
lem is still difficult, yet accessible. From 3.21, a left closed right com­
plete subcategory (B is reflective if <B is right complete and every ob­
ject of a generating set has a reflection in (B. If 6 is a primitive cate­
gory of algebras, the free algebra on one generator generates it, by 
right small-closure; and we have reduced (for full, right small-com­
plete <B) to determining the frames of cyclic algebras. In lattices, 
for instance, cyclic=>injective (which always implies triviality of 
frames), and there is only the question whether every left closed full 
subcategory is right small-complete. I have no idea. In distributive 
lattices it is trivial; this is an example of a "simple" category, where 
every object except some trivial ones (having fewer than 2 elements) 
is a generator and a cogenerator. In the compact (Hausdorff) spaces, 
every non-empty space generates, and of course there is a cogenerator 
(moreover, a right adequate object [6]). The one-sided simplicity 
makes every left complete full subcategory left closed, except the full 
subcategory on the empty space. Thus every complete full subcategory 
of the compact spaces is a retract. That sounds like a theorem ; but if 
one pulls out the proof and looks at it, one sees that "right small-
complete" is enough and the proof is trivial. I t (like the literature) 
tells us nothing about reflective frames of a two-point space. 

4. Regular completion. Let us call a category left transcomplete if 
every diagram in it has a limit. Note that this does not imply even 
left strict-completeness, for a diagram cannot be a proper class but 
an object might have a proper class of strict subobjects. Hence we 
want some boundedness lemmas for functor categories. 

Call a functor F in Cat(<3*, 11!) separated if it is a term of a sepa-
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rated couple, or equivalently, it maps monomorphically into a prod­
uct of principal functors. The equivalence depends on the easily 
checked fact that a monomorphism $ of functors must be one-to-one, 
i.e. every function 3>x is one-to-one. That fact makes the next lemma 
obvious. In these lemmas, and wherever Cat is applied, © has only 
a set of objects. 

4.1. Every full subcategory of Cat((B*, %\) containing the principal 
functors is set-powered. 

4.2. Every full subcategory of separated functors containing the prin­
cipal functors is co-set-powered. 

PROOF. If F maps epimorphically to G, every Hom(G, hx) has 
cardinal number at most that of Hom(77, hx)- Thus the separated 
wide quotients of F are among the subf unctors of a certain product of 
principal functors, and there are only a set of them. 

Let us use the symbol 3} for the isomorphic copy of C consisting 
of the principal functors in Cat(G*, «U!) and their maps. The left 
regular transcompletion £ ! of 6 is the left transclosure of 33, i.e. the 
full subcategory on the 3>multistrict subobjects of products of 
objects of 3D. We call the objects of £ ! stable cogroundings. What they 
are stable under is the reflector Q: Cat(G*, 11!)—><£!. The existence 
of this reflection follows from the Special Adjoint Functor Theorem, 
by a reinterpretation replacing "small set" by "set" throughout; the 
required left completeness of the domain £\ follows from 4.1. 

4.3. THEOREM. The left regular transcompletion o f a category 6 with 
a set of objects is reflective in Cat(C*, 'll!) and left and right transcom-
plete and wide-complete. The embedding of 6 in it is left and right con­
servative. 

PROOF. We just showed that £\ is reflective. By 3.16, it is a re­
tract; by 3.1, it is transcomplete; by 4.1 and 4.2, it is wide-complete. 
The last assertion follows from 3.4. 

I t will be convenient to have an explicit description of the reflector 
Q and a test for stability.7 Consider the evaluation e: F—+F**; it is 
defined in the obvious way [6], which is equivalent to deriving it 
from the natural coupling of F and F* by the dual of 1.1. Take the 
3>dominion D of e, i.e. the smallest containing 3>sesquistrict sub-
object, and the factor maps q: F—>D, i: DC.F**. Every map 5 from 
F to a principal functor hy is an element of F*(Y) and is divisible by 
e by evaluation; define sx(t)=tY(s) for each £ £ J F * * ( X ) , and check 
s€ = s. Thus siq = s. Since D is the dominion, si is the only solution u 
of uq = 5. Then every map from F t o a product P 0 of principal func­
tors is uniquely divisible by q. Given a 30-multistrict analysis 

7 The construction is a specialization of the dual of half of 3.18. 
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{Pa\ fa&\ and a map s: F-*Pay having u$\ D—+P& such that Upq~faps, 
the defining relations for fp+i,B come from maps into principal func­
tors, and since u$q satisfies them, so does u$. Hence u$+\\ similarly 
a t limit ordinals, and D is the stable reflection of q. (The lemma here 
is, of course, that a proposed reflection need only be checked for maps 
into a set of (improper) cogenerators.) 

So stable functors are limits of limit functors. They need not be limit 
functors (5.8). 

There is another conclusion from this argument that we shall want 
in the midst of the next theorem; given a map r: F-*G in Cat(C*, «U!), 
if F is stable and r*: G*—>F* is invertible, then r has a left inverse. For 
the inverse of r * takes (coordinate) maps 5 from F to principal func­
tors to solutions u of ur — s, and the argument above (reduced now to 
two steps) applies again. 

The reflector Q yields a good factorization of K\. This is deducible 
from 3.18, but let us treat it directly. (1st) Given * : F-»G, ^ : F-+G, 
if Q ( * ) = Q ( ¥ ) then J K 1 ( f )=Ki (* ) ; for i£i(*) and 25TiQ(*) are the 
sides of a commutative rectangle whose ends are isomorphisms Ki(q). 
(2nd) If Q(&) T^Qfö), then some map from Q(G) to a principal functor 
separates them, and KiQ(<&) 9eK\Q(^). Therefore Ki factors across Q 
and the other factor J i : <£!—»Cat(G, 'll!) is a dual embedding. More­
over, it is trivial to check that QK% and K\\ <£ ! are adjoint on the right. 

Let us define the left regular left completion £ of G as the left closure 
of 3D in <£! (or equivalently in Cat(C*, cll!)) ; the left regular completion 
<£oo is defined inductively in <£! by putting £ = £i, <£2a+i the left 
closure of £2 a , <£2<H-2 the right closure of <£2a+i, and £\ (for limit num­
bers X) the union of the preceding <£«. This hog-wild method of com­
pleting is not successful in general, but we are not in general. 

4.4. THEOREM. The left regular completion £wof Qis a completion of 
<B. Every left complete full subcategory of Cat(G*, «U!) containing 3D is 
essentially left closed. Every right complete full subcategory of £ ! con­
taining 3D is essentially right closed. Thus <£<* is the unique completion 
of 6, up to equivalence, in £ !. 

If G is small, its left regular left completion £ is already right com­
plete. £ is well-powered and co-well-powered and is a (normal) comple­
tion of G, the sole completion (up to equivalence) in Cat(G*, c\l\). 

PROOF. Completeness of <£«, follows from the fact (and its dual) 
tha t £2a-multistrict subobjects of objects in <£2<*+i are the same as 
their 2D-multistrict or £ !-multistrict subobjects, since everything 
maps monomorphically into a product of (no matter how many) 
objects of 3D. The second assertion of the theorem is clear from the 
consideration that every object X in the category of cogroundings is 
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determined by £>( , X) ; thus if X is a limit of a given diagram it is 
the limit. Next consider a colimit F of a diagram Z> in a right complete 
full subcategory 2flZ of £\ containing 3D. Compare with the £\—co-
limit F0 of D. The right conical extension of D by F is connected to 
the universal right conical extension by a map r: FQ-+F which induces 
a natural equivalence of 3TC(JF, ) and ^(i^o, ). Thus r* is invertible, 
and since FQ is stable, Fo is a retract of F; F0 is in 9fTC. The first para­
graph is proved. 

The rest of the theorem follows from 4.3, 4.1, 4.2, with a rein ter­
pre tation replacing "set" by "small set"; and 2.1.a. 

We call a category 6 infective if it is locally small and is a retract 
of every locally small category 8 in which C is fully embedded so that 
8 contains just one object not in G. Let us show, if we can, that this 
implies as much as one could reasonably ask. 

For non-full embeddings, %, can be embedded in itself by I - > J X I , 
and there is no retraction because symmetric groups are not direct 
sums. The same argument applies to, for instance, groups and vector 
spaces. (I do not know if the suggested retraction property is equiv­
alent to being wide-complete and trivial, where triviality means no 
two coterminal maps exist.) 

4.5. THEOREM. Every functor from a small full subcategory of an 
ordinary category to an infective category (B can be extended', and © is 
a retract of every locally small category 8 in which 6 is fully embedded 
so that 8 contains at most <*> objects not in 6. 

Both proofs are routine exercises, if one recalls the induction 
scheme for the Hahn-Banach theorem. 

We will not in fact construct retractions that way; so we may as 
well mention a stronger, illegitimate, but not rare, property. G is 
extraordinary-infective if it is locally small and is a retract of every 
locally small category in which G is fully embedded. 

4.6. EXAMPLE. Not every ordinary grounding of a full subcategory of 
a trivial ordinary category can be extended. 

This is with the other examples, in §5. Every properly generated 
grounding of a full subcategory of an ordinary category can be 
extended [6]. Thus there seem to be interesting boundedness ques­
tions in the extensions of functors with injective range, which are not 
our present concern. 

4.7. THEOREM. Every locally small right small-complete category hav­
ing a small left adequate subcategory is ordinary, well-powered, left 
complete, right strict-complete and extraordinary-infective. 

PROOF. Such a category G, having a small left adequate subcate-
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gory (jfc, is fully embedded in Cat((5t*, «U) by subregular representa­
tion, and therefore it is ordinary. As it contains the principal functors, 
4.1 shifted to small sets implies tha t C is well-powered. By 3.21 and 
2.1.a, G is reflective in Cat(<$*, <U); thus it is right strict- and left 
wide-complete. If 6 is fully embedded in a locally small category 8, 
subregular representation and reflection 8—»Cat((5t*, %)—>Q yield a 
retraction. 

4.7 applies to primitive and quasi-primitive categories of algebras 
[8]. 

4.8. THEOREM. A left complete category having small generating and 
separating sets and only a set of objects—in particular, a normal com­
pletion of a small category—is extraordinary-injective. 

PROOF. Such a category G is locally small by 3.8 (set of objects 
used here), complete by 3.14 and 3.15. Given a full embedding of G 
in a locally small category 8, we set about retracting by subregular 
representation 8-»Cat(G*, Ol) CCat(G*, Ol!), reflect into <£!, and 
must show that the resulting cogroundings are representable. Con­
sider any F in Cat(G*, «U). In a value of the conjugate F*(Z) 
= Hom(JP, hz), suppose «7^/3. Then CLYT^^Y for some F, meaning 
ay{y) and j8r(;y) are distinct maps Y—>Z for some yÇzF(Y). In a small 
coseparating (not to mention generating) set there must be an object 
X such that for some/ : X—» F, ay(y)f ^/?r(:y)/. That is, ax and fix have 
different values a t F(J)(y)EF(X). The union of all these F(X) is 
small, as also for the hz(X) ; so F* is small-valued. We also assumed 
a small separating set, so we may conclude that .F** and Q(F) are 
small-valued. Now Q(F) is a small-valued multistrict subfunctor of 
some product of principal functors &z, Q(F) QP; we need only show 
that a small number of Z's suffice. (As repeated coordinate functions 
can be ignored, this puts Q(F) in £ , which consists of representable 
functors by 4.4.) Note that the embedding of G in £ ! is left and right 
conservative by 4.3. Take a small generating set 5 of X's and form 
the coproduct S in 6 of copies of X's each indexed by Q(F)(X). There 
is a universal map y:h^—^Q(F)t whose pth coordinate T for each 
index p£:Q(F)(X) is determined by 7r( lx)=£. Moreover, y is an 
extremal epimorphism in £ !, i.e. 5 generates, albeit improperly. For if 
7 has left image G, 2—>GQQ(F), we shall find that every map 
a: hT-^Q(F) factors through G, i.e. a(lT)GG(T); and every element 
of every Q(F)(T) has the form a( ly) . To prove this, represent T as 
an extremal quotient of a coproduct U of objects of S. We get an 
extremal epimorphism q: hu—*hT, and aq factors through G since y is 
universal (all its restrictions to "summands" hx of hu factor through 
G). Now ij : hu—*G—*Q(F) is aq =ƒ. Since q is extremal epimorphic and 
i monomorphic, the left image L of ƒ lies between, and there are 
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connecting maps }IT—>L—»G, accomplishing the factorization of a. 
Since 7 is extremal epimorphic, every map j8: Q(F)—^hz factors across 
the left image of 187, which is hy for some extremal quotient Y of 2 . 
By 3.14, there are only a small set of these. Q(F) C.P is factored across 
their product, and an initial factor of an extremal monomorphism is 
an extremal monomorphism, completing the proof. 

4.9. Every injective category is small-complete. 
The proof is trivial except for one point that might be overlooked. 

Do not adjoin a limit or colimit functor, but the functor like R°D in 2.1. 
One would like to deduce 4.9 by embedding in a locally small small-

complete extension. I do not know if it is possible. Of course there 
need not be such an extension in Cat(C*, cll). One could go step by 
step, adjoining every needed small limit or colimit, expecting to finish 
after 00 suitably arranged steps ; but while every small diagram will 
then have had a limit, the extensions are not conservative and there 
may be no limit at the end. 

4.10. EXAMPLE. Not every ordinary category can be fully embedded 
in a complete locally small category. 

The example is in §5 and may, for all I know, be injective. There 
is another construction program that might lead to an embedding 
of any locally small category in an injective category, by adjoining 
one non-retractable object a t a time. The adjoined objects can be 
chosen to be rather special grounding couples, and there is no con­
servation problem, but I do not see why the construction should ever 
ever end. 

5. Examples. A complete category need not be injective, as was 
already suggested when we noticed wide-complete trivial categories. 
For trivial categories, injectiveness is equivalent to wide-complete­
ness. I t seems unlikely that every wide-complete locally small cate­
gory is injective, but I have no example. 

For 4.6, consider the category a faithfully grounded by F: $—•Ol, 
with F(d) consisting of 00 one-point sets Xa and 00 two-point sets 
ZQ= {Oys, I3} ; the maps are the identities and one map Xa—»Zp for 
each a and /3, whose value in {0, 1} is a Kronecker delta Sa/3. The 
trivial category Ö, has a trivial extension with one more object Y 
across which all maps Xa—*Zp factor. But F cannot be extended; 
F( Y) would have to include an image point of each Xay all distinct. 

The incompletable example for 4.10 will be constructed in U and 
small-complete, hence strict-complete; and the limitless multistrict 
analysis will be a part of the natural analysis of a map which does, as 
it happens, have a right image—for it is an extremal monomorphism, 
though not multistrict. For an example of a strict-complete category 
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in which some map has no right image one would have to burrow 
deeper, and take care that the example is not (like this one) right 
wide-complete. 

Consider first the trivial category of threads. For each isolated 
ordinal a > 0 there are a bare thread Ta and a capped thread 5 a . There 
is always a map Ta—*Sp and never a map Sp—>Ta', Ta maps to Tp if 
and only if jS^a, Sa to Sp if and only if jS^ce. We adjoin a last point 
P , every thread mapping to P and P mapping to no thread, and 
ground the resulting category in disjoint sets as follows. Ta goes to a 
well-ordered set of order type a, Sa to a well-ordered set of type a 
with an additional element, the cap ca, and P to a one-point set. No 
map except an identity has a cap as a value. Otherwise, all the maps 
between threads go by embedding as large an initial segment of the 
domain as the range will hold and mapping the rest of the domain, in­
cluding cap, to the last element of the range. Now the union of all 
these sets is a set U all of whose elements will be called points. U is 
partially ordered if we say p^q when some map takes p to q. If a 
least element were adjoined to U, the result would be a small-com­
plete lattice, in which the successors of any point are totally ordered. 
Construct the set V of marks from U by replacing each two elements 
ua, ca, where ua is the a-th element of Sa and ca the cap, by one ele­
ment va, a double mark. Maps of threads take marks into marks, and 
V is another small-complete lattice-lacking-zero with totally ordered 
successors. The example <B, the category of snarls, has for objects 
all small families of marks, i.e. functions L—»F, where L is a small 
set of indices. Before defining snarl maps we ground X: L-+V to a set 
FÇK) consisting of two elements for each indexed double mark and one 
element for each of the remaining indexed single marks. Then maps 
are functions P(X)—»P(/x) which take each point to a successor and 
map each double mark either to one successor mark or to two last 
points (which may coincide). 

One can readily check small-completeness of 6. Products are Car­
tesian products of families, coproducts are disjointed unions, co-
equalizers are constructed by identifying and, where different marks 
are identified, taking suprema in V. The fact tha t that construction 
gives an epimorphism is plain from the consideration that the suc­
cessors of a double mark are reverse well-ordered. For an equalizer, 
one takes a subfamily, except that the effect in a double mark 
{ua, ca} of equalizing two maps which take it to last points and agree 
just on ua is to replace this mark va by va+i. (If the maps agree just 
on ca, this mark contributes nothing to the equalizer.) 

The threads, being particular small families of marks, are fully 
embedded in the snarls. The capped threads Sa with their maps form 
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a limitless multistrict analysis, the beginning of the natural analysis 
of any of the extremal monomorphisms Tp—»5i. Moreover, if a limit 
X were adjoined, it would have to have oo different maps to the 
snarl Z consisting of two last points, for various left conical exten­
sions by TVs distinguish all formally different maps X-^Sa—^Z ex­
cept those which differ only at the cap. 4.10 is proved. 

5.1. EXAMPLE. A non-strict monomorphism as an initial factor of a 
strict monomorphism. 

In the simplest example I know, two of the objects are accidentally 
isomorphic; the notation ignores this and follows 2.7. Let X be the 
free semigroup on generators x, y, z, X' the quotient of X by the con­
gruence relation identifying xzy with z. One can check, easily, that 
every word in x, y, z is equal in X' to a unique word in which "xzy" 
does not occur. Hence the subsemigroup W of X generated by z, xz, 
and zy goes monomorphically into X1'. To verify that the monomor­
phism W—>Xf is strict, one must examine the semigroup Y presented 
by generators Xi, x2, yu y2, z and relations x\Z = x2z, zyi=zy2, Xizyi = 2, to 
establish that every word there is equal to a unique equivalence class 
of words in which no string "xizy" occurs and the equivalence con­
sists of ignoring subscripts on x's preceding, or y's following, a z. 
Thus the two obvious embeddings of X'(x—»x*, y—*yu z—*z) agree 
exactly on W. But the initial factor WC.X is not a strict monomor­
phism, xzy being in the dominion; the example WQX was given in 
[9] to show that the dominion can be a free extension. 

5.2. EXAMPLE. Retractions need not preserve limits. 
Start with a disjoint sum of HI and the category Hlo of all small 

sets with base point. Adjoin a mapping 0: X—>Y for each X in 'Ho, 
Y in HI. The result is wide-complete, the full subcategory on all ob­
jects except the empty set L of HI is still wide-complete, and there 
are retractions taking L to any object X of Hl0. L is an equalizer of 
maps between non-empty sets in HI, and is not preserved unless it 
goes to the zero of Hlo. 

5.3. EXAMPLE. A full reflection of a right complete category that is 
not right complete. 

First consider the category 3C of all small sets having a marked 
point 0 and possibly two more marked points p, q, all three different. 
Tha t is, there are two types of objects in 3C, those which lack both p 
and q and those which have both. The mappings are all functions ƒ 
satisfying jf(O) = 0, f{p) = p, f(q) = q, and x 9^ 0=>/(x) 5̂  0. This category 
would become right (wide-) complete if a right zero R were adjoined. 
Then, coproducts involving R would reduce to R, and other co-
products come from disjoint unions by identifying all 0's, identifying 
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all p's, identifying all q's. Coequalizers of pairs ƒ, g would be formed 
by making all identifications ƒ(x)~g(x) and collapsing to R in case p 
became identified to q. Since an epimorphism can omit at most two 
values, that would establish right completeness. But R is missing 
from 3C. Let L denote the left zero {0}. 

Let G be a totally ordered set consisting of the negative integers 
and the small ordinals in natural order. Let 6 be a category with the 
following objects and maps. For each yÇzG, a copy 3C7 of 3C. One 
additional object, a left zero L which is the range of no map except 
1 1 . For Xp in SCp, Yy in 3C7, Y>/3, there is one map from Xp to F7 , 
none from Yy to Xp. This defines 6, since compositions not within 
one 3C7 have only one possible value. 

6 is right complete. For each 3C7, the missing coequalizer Ry is 
L7+i. Coproducts extending over many 3C7 are formed by ignoring all 
bu t the last 3C7; if there is no last, the coproduct is the next L$. (L is 
the coproduct of the empty family.) As for coequalizers, distinct co-
terminal pairs of maps occur only within an 3C7; strict epimorphisms 
can go no farther forward than from 3C7 to L7+i. Since Ly+i has no 
strict quotient except itself, compositions of strict epimorphisms are 
strict, and we have right completeness. 

Reflect 6 upon a full subcategory by adjoining (in each 3C7) the 
points p, q to all objects lacking them; every m a p / : Xy—*Yy extends 
over p and q uniquely, and we have a reflector. The image (E is (by 
3.1) right strict-complete. But in (B the strict epimorphisms Ty 

—>L7+i(r= {0, p, q}) are shifted to Ty—>T7+i, and form a right multi-
strict analysis having no colimit. 

I do not know whether the limits of multistrict analyses which arise 
in factoring a mapping are respected by retractions, or by adjoint 
retractions. (If <B is reflective full in G and ƒ: X—>F in (B has a left 
image in G at the end of a multistrict analysis, reflection preserves the 
analysis but not the property of reaching all the way to the image. 
If the (B-images of ƒ exist—the problem—they are the G-images, since 
each essential property is preserved by one of the two adjoint func­
tors.) 

5.4. EXAMPLE. A full reflection of a right wide-complete category that 
is not right wide-complete. 

For each small ordinal a > 0 , let Va be a copy of the category of all 
small non-empty sets. Let "Do be a copy of all of CU. Fill out the union 
by giving Hom(X, Y) one element for X in Vaf Y in Vp, «<]8, and 
Hom(F, X) no element. The resulting category 6 is right small-
complete by similar reasoning to that of 5.3, and right wide-complete 
because there are no epimorphisms except within a T)a. But the full 
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subcategory on the empty set from Vo and the one-point sets from 
the other Va is plainly reflective and not right wide-complete. 

5.5. EXAMPLE. An incomplete reflective subcategory of the abelian 
groups. 

Let 3D be the full subcategory of the category g of small abelian 
groups composed of the even-dimensional vector spaces over the 
integers mod 2. Of course 3D is incomplete and not reflective in the 
standard embedding. But map 3D into g by the abelian-principal 
functor 1$, where X is Z2®ZÏ and ¥(Y) is hx(Y) regarded as a group 
under pointwise addition, kt is the restriction to 3D, in the standard 
embedding 7, of a well known functor h: 9~*9 with a w e ^ known left 
adjoint ®X. The image of ®X is contained in 7(3D), so that ®X = It 
for a tensor-functor t: g—»£>. I t is trivial to check that t, ¥ also are 
adjoint functors. (£>(t(A),B) is Q(It(A),B), Q(A, h*(B)) is Q(A,h(B)).) 
As ¥ is one-to-one on objects and mappings, its incomplete image is 
reflective. 

5.6. EXAMPLE. A left closed, full, non-reflective retract. 
This can be done in a trivial category constructed from the threads 

Taf Sp of the category of snarls by adjoining an object U with one 
map Ti-+U and one map U-+Sp for each /3; the subcategory omitting 
U is the indicated example. 

5.7. EXAMPLE. A left adequate subcategory of a left adequate sub­
category of a primitive category of algebras that is not coseparating. 

The algebras have three unary operations, idempotent a and |8 and 
an involution a satisfying a(a(x)) =j3(#) (so j3<r = acr2=a) and era —a, 
0-/3 = j3. Tha t is to say, it is the category 6 of ordinary cogroundings 
of a one-object category 3D whose object D has the endomorphisms of 
a two-point set. D and the one-point algebra P form a subcategory 
(B of 6 that is left adequate in 6, since it contains 3D. (B is isomorphic 
with the full subcategory of ^ on a one- and a two-point set, and the 
full subcategory Ct on P is left adequate. But back in 6, D is free on 
one generator xf and has two embeddings x—*y, x-*z in the algebra 
generated by y and z subject to a(y) =a(z), j3(y) =j3(;s), which are not 
coseparated by the trivial algebra P . 

(One can replace (B by a complete subcategory <U. Q, is complete.) 
5.8. EXAMPLE. A stable functor that is not a limit. 
Of course, such a functor can be constructed almost a t random, but 

then the proof will be complicated. All limits are apparent if we start 
with a free category generated by one map a: X-+X. X can be repre­
sented as a free algebra on one generator with one unary operation. 
Its limits are the empty algebra, the one-element algebra, and the 
powers of X; for the relations which a diagram of X's can impose on 
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coordinates in the product can only be incompatible or make some 
determined by others. Thus the free algebra on two generators is not 
a limit of copies of X, though it is a retract of XXX. 
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