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Partition the boundary contours of a compact bordered Riemann 
surface W into four disjoint sets a0, a, /3, y with a0 and a nonempty. 
Let F consist of all arcs in W—y which have initial point in a0 and 
endpoint in a. Let F* consist of all cycles in W~0 which separate 
a0 from a. Determine the harmonic function u in W by the boundary 
conditions « = 0 o n « 0 , u = l on a, du/dn = Q along y, and u is con­
stant on each contour & in /3 with the constant so chosen tha t 
ff3.du* = 0. Then \(F) = \ - 1 (^* ) H M " 2 w h e r e M') denotes the ex­
tremal length and || -||2 denotes the Dirichlet norm. This result is im­
plicit in the fundamental work of Ahlfors-Beurling [ l ] . Observe that 
if W is planar and a0, a are single contours then exp 2ir(u+iu*)/\\du\\2 

is a conformai map of Int W into l < | z | <exp 27r/||dw||2, the com­
ponents of /3 going onto circular slits and the components in y onto 
radial slits. 

The purpose of this note is to announce a complete generalization 
of the above result which is valid for arbitrary open Riemann sur­
faces. As a consequence of our work we obtain a new class of con-
formal mappings of plane regions onto "extremal" slit annuli anal­
ogous to the situation described above. These results and their proofs 
will be published in a forthcoming paper [2]. 

We begin with an open Riemann surface W and partition its 
Kerékjartó-Stoilöw ideal boundary into four disjoint sets a0, af /3, y 
with a0 and a nonempty. For technical reasons we assume that 
a0, a, ao^Ja^Up are closed subsets of the Kerékjartó-Stoilöw com-
pactification TF of W. Let $ be the family of arcs in W — y with initial 
points in a0 and end points in a. Let $* consist of all suitably orien­
tated r such that r is a countable union of closed curves in W—a0 

—a—j8, all limit points of r are contained in 7, and no component 
of W—y—T contains points in both ce0 and a. There is a natural 
definition for X(^), X(£F*) obtained by replacing each curve r C ^ by 
the curve TC\ W. An HD-l unction won W is constructed which gen­
eralizes the u defined above for compact bordered surfaces. The actual 
definition of u uses a noncompact exhaustion of W "in the direction 

1 This work was supported in part by the National Science Foundation under 
grant GP 2280 at the University of Minnesota and GP 4106 at the University of 
California, San Diego. 
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of 7." We shall omit the precise definition here in favor of character­
izing M by an extremal property (see below). Our main result is the 

THEOREM, (a) \($) =\\du\\-2 and (b) X(SF*) = | M 2 -

For the proof of (a) one obtains X($0 = | | ^ | | ~ 2 fairly easily. The 
opposite inequality depends on a highly topological continuity meth­
od for extremal length in which arcs in an exhaustion of W are pieced 
together to form an arc in W. This method is ascribed to Beurling and 
was developed by Strebel [ô]. Using it, Strebel proved (a) in the 
case /? = <£. Even in this special case part (b) is new; it asserts that 
the conjugate extremal distance between two ends of an open Rie-
mann surface is the extremal length of the class of curves which 
separate these ends. Part (b) is proven by establishing a generalized 
Green's formula which implies that fcdu* = \\du\\2 for almost all curves 
^G^*. ("Almost all" means with the exception of a family of curves of 
infinite extremal length.) 

As immediate corollaries, several uniqueness properties of u are 
obtained. For example, u minimizes \\dh\\ among all harmonic h 
which satisfy fc dh^l for almost all cG^F. 

Let the ideal point <x0 be replaced by a point in W. A harmonic 
function p can be constructed with the boundary behavior of u near 
a, /5, 7 and with a logarithmic singularity at a0 of period 2w. p gen­
eralizes the capacity function of Sario. We show that even on a non-
planar surface there always exists a boundary component of maximal 
generalized capacity. The functions exp 2T(U + iu*)/\\du\\* and 
exp(p+ip*) give conformai mappings when Wis planar and a0, a are 
single components. Their images will be called extremal slit annuli 
or disks respectively. We show that (i) the area of the slits is 0, (ii) the 
image of a boundary component in 7 is a radial slit or a point, (iii) the 
image of a component in (3 which is isolated from 7 is a circular slit 
or a point, and (iv) in many other cases the image is circular with 
radial incisions. 

Our results imply the now classical properties of extremal circular 
slit annuli ( 7 = 0 ) as found in Reich-Warschawski [4], [5], and of ex­
tremal radial slit annuli (^=<j>) obtained by Strebel [6], [7] and 
Reich [3]. Even in these classical cases, however, the following corol­
lary of the theorem is new. 

Suppose A is a plane region contained in l < | s | <-R. Set p{z) 
= (| z\ log R)~* and k = 27r/log R. The following are equivalent: 

(1) A is an extremal slit annulus of radii 1, R {i.e. the f unction u 
constructed for A is (log \z\) /log JR) . 

(2) Jvp\dz\ â l and fT p\dz\ ^k for almost all aÇ:$, TÇZ$*. 
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(3) \(30 ^k"1 and Jvp\dz\ à 1 for almost all aÇz$. 
(4) X(50 *zk~l and frp\dz\ ^kfor almost all rGJ*. 
If j8=0 or y =<f> then (3), (4) can be replaced by the single condition 
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