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Let D be a dihedral group of order 2p, where p is an odd prime. 
D is generated by the elements a and ]3 with the relations ap~fi2 = 1 
and (ial3 = or1. Let A be the subgroup of D generated by a, and let 
Aoy Ai, • • • , Ap-\ be the subgroups generated by j8, aft, • * • , ap - 1 /3, 
respectively. Let M be any D-module. Then the cohomology groups 
Hn(A0, M) and Hn(Aif M), i = l , 2, • • • , p — 1 are isomorphic for 
every integer n, so the eight groups H~1(Df Af), H°(D, M), Hl(D, jfef), 
# 2 ( A Af), f f" 1 ^. M), HQ(A, M), H-Wo, M), and H»(A0, M) deter­
mine all cohomology groups of M with respect to D and to all of its 
subgroups. We have found what values this array takes on as M runs 
through all finitely generated -D-modules. 

All possibilities for the first four members of this array are deter­
mined as a special case of the results of Yang [4]. But we have not 
been able to extend his methods so as to determine all possibilities 
for the whole array; our methods are independent to those of Yang. 

METHOD OF PROOF. First we follow the method of Parr [3] in 
showing that it suffices to consider only finitely generated Z-torsion 
free ZZ)-modules, where Z is the ring of all fractions m/n of rational 
integers m and n such that (n, 2p) = 1. Lee [2] has listed all indecom­
posable modules of this type; there are ten. We compute directly 
several of the cohomology groups for the first five modules in her list. 
The last five of her list may be treated as members of extensions. 
These yield exact sequences of cohomology groups, which give in­
formation about the last five modules. We can then complete the 
values in all of the arrays by using the result that the cohomology of 
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a dimension shift for a finitely generated module M must be a finite 
direct sum of cohomologies arising from the list of ten. 

RESULTS. If M is any finitely generated JD-module, then the co-
homology of M with respect to D and to all its subgroups is given by 
the direct sum of finitely many of the following: 
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