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1. Introduction. J. Tate [8] has introduced a theory of cohomo-
logical dimension for fields using the étale Grothendieck (= Galois) 
cohomology. In recent work, M. Artin has extended these methods to 
produce a dimension theory for noetherian preschemes. On the other 
hand, the author [5] has used the flat Grothendieck cohomology over 
a field to study certain duality questions (see also [7], [9] for the 
étale case) ; so it is natural to ask whether there exists a dimension 
theory based on the flat cohomology. We shall show that the answer 
is, in general, no. Full proofs will appear in [6], 

2. Terminology. A Grothendieck topology is a pair consisting of a 
category Cat T and a set Cov T of families of morphisms of Cat T. 
They are subjected to the axioms: 

(1) If <f> is an isomorphism, {</>} G Cov T. 
(2) If { Ui-+U} G Cov T and { Vir->Ui} G Cov T, for all *, then 

(3) If {Ui-*U}GCovT and V-+U is arbitrary, then UiXuV 
exists for each i, and { UiXuV-^V} G Cov T. 
A presheaf (of abelian groups) on T is a contravariant functor from 
Cat T to the category of abelian groups, while a sheaf, F, is a pre­
sheaf which satisfies the axiom 

For all {Ui—*U\ G Cov T, the natural sequence 
(S) F(U) -* I I F(U<) ZX I I HUiXu Ui) 

i i,j 

is exact (i.e., F( U) is mapped bijectively onto the set of all x G Ü i F( Ui) 
whose images by the two maps shown agree in IJt\y F(UiXuUj).) 
Roughly speaking, all that is done in Godement's book [2] for classi­
cal sheaf theory may be done in this general setting [ l ] . If X is a 
prescheme [3, Vol. I, p. 97], we let Cat T be the category of all pre­
schemes Y which are separated, finitely presented, flat, and quasi-
finite over X [3, Vol. I, p. 135, p. 144; Vol. IV, p. 5; Vol. II , p. 115]. 
Cov T consists of arbitrary families of flat morphisms whose disjoint 
sum is faithfully flat [3, Vol. IV, Part 2, p. 9] . I t is known that these 

1 Supported in part by the National Science Foundation. 
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data define a Grothendieck topology, which we call the flat topology 
on X. 

3. Main results. 

THEOREM 1. Let X = Spec A, with A a complete, noetherian local 
ring of characteristic p>0. Unless A is a perfect field, we have c.d.p 
X— oo ; that is t for every integer n^O, there exists a torsion sheaf2 Fn 

in the flat topology on X such that the p-primary component of Hn(X, Fn) 
is not zero. Moreover, if the residue field o f A is separably closed, then the 
sheaves Fn {for n > 0) may be chosen so that 

H'(X, FH) = (0) forr^09r^n 

Hn(X, Fn) = A+/A+*. 

COROLLARY. Let kbea field of characteristic p>0. Then the following 
statements are equivalent: 

(1) k is perfect, 
(2) c.d.p fegl, 
(3) c.d.p k is finite, 
(4) c.d.pk8 = 0, 
(5) c.d.p k8 is finite. 

THEOREM 2. Let k be a field of characteristic p>0. Let G be a com­
mutative group scheme [3, Vol. II , p. 166], [5, p. 412] of finite type over 
k. Then for every r>2 we have Hr(k, G;p) = (0). (Here, Hr(X, F; p) 
denotes the p-primary component of the group Hr(X, F).) Consequently, 
by restricting the coefficient category to those sheaves which are représenta-
ble (or their limits) we may bound the p-dimension of the field k by 2. 

4. Sketch of proofs. Over a complete local ring, one may replace 
quasi-finite by finite with no change in the dimension theory. Every 
finite algebra over A is a complete semilocal ring, hence a direct 
product of complete local rings. Thus every object of Cat T is 
uniquely a sum of connected schemes and all constructions and veri­
fications may be restricted to the connected objects of Cat T. In the 
case of separably closed residue field, for each abelian group G, and 
each sheaf of sets F over X, we define a presheaf &F by 

dF(U) = U ^j U connected 
F(U) 

where UFCCO & means the direct sum of copies of a indexed by the 
set F(U), and we extend the definition of dF in the usual way to the 
nonconnected objects of Cat T. 

1 That is, a sheaf whose values lie in torsion abelian groups. 
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LEMMA. Let A be as in Theorem 1 with separably closed residue field. 
Then the presheaves 6, F are sheaves and for every object U and covering 
V of U in Cat 7\ 

(**) H'(V/U, aF) = (0) for r > 0. 

From equation (**) one deduces that Hr(U, G,F) = (0 ) for every 
r > 0 and every object Uof Cat T. If Fx^dp, where ap is the kernel of 
the Frobenius map on the additive group scheme Ga> then F\ satis­
fies equation (*). The exact sequence 

0 -> F2 -> (Z/pZ)Fl -> Fi -> 0 

and the above lemma, show that F2 satisfies equation (*). One now 
proceeds by induction using the lemma and the exact sequence 

0 -> Fn+1 -» (Z/pZ)Fn -+ Fn -> 0. 

For the general case, one analyzes the Leray spectral sequence [ l ] 

HU(X, i?V*F) => H*(X9, F) 

(where X8 = Spec A®k ks, k = residue field of ^4, ^8 = separable closure 
of *). 

The Corollary follows immediately from the theorem if one uses the 
Hochschild-Serre spectral sequence [l , p. 92] as applied to Grothen-
dieck cohomology. 

Theorem 2 is proved by reducing it to a question concerning 
artinian group schemes [5, pp. 412-413]. This is done via a structure 
theorem for the category of sheaves over k, and results of Tate. The 
conclusion is : in order to prove Theorem 2 it suffices to prove it for 
the kernel Gn of the wth iterate of the Frobenius map on G. In this 
case, we make use of the Hochschild-Serre spectral sequence and the 
structure of a composition series for Gn over ks to reduce the theorem 
to two assertions 

(i) # ' (* . , ap) = (0) f o r r > l , 
(ii) Hr(ks, up) = (0) for r>\. 

Here up is the kernel of the Frobenius map on the multiplicative 
group scheme Gm. Assertion (i) is known from [4, p. 21], [5, Proposi­
tion 3], and assertion (ii) follows because one can prove 

H*(k8, Gm) = (0) for r > 0. 
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