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In a preceding note [2] we showed that if K and L are w-complexes, 
then K and L are isomorphic iff the 1-sections of the first derived com­
plexes of K and L are isomorphic. Since topological equivalence does 
not imply combinatorial equivalence for complexes this result fails 
to hold if the 1-sections are only required to be homeomorphic. How­
ever, for a large class of complexes we will show that this theorem is 
true under the weaker condition. 

Throughout, sv will denote a (rectilinear) ^-simplex with vertices 
a0, a1, • • • , ap; K will denote a finite geometric simplicial complex 
with w-section Kn and first derived complex i£'. For more details see 
[1, §1.2]. 

We first recall a definition and two theorems from [2]. 
DEFINITION 1. An ^-complex K is full provided, for any subcom-

plex L of K which is isomorphic to s*, 2^p^n, L° spans a ^-simplex 
of K. 

THEOREM 1. If K and L are full n-complexes, then K and L are iso­
morphic iff Kl and L1 are isomorphic. 

THEOREM 2. If K and L are n-complexes, then K and L are iso­
morphic iff (K') * and (Z/)1 are isomorphic. 

DEFINITION 2. A complex K is said to be taut provided, Kl has no 
vertex of order 2. 

DEFINITION 3. A complex K is said to be trim if it is full and taut. 
In each of the next three theorems we need only prove one implica­

tion for the equivalence since isomorphic complexes have homeo­
morphic realizations. 

THEOREM 3. If K and L are taut 1-complexes, then K and L are 
isomorphic iff \ K | and | L | are homeomorphic. 

PROOF. Let <f> : \ K | —> | L \ be a homeomorphism of | K \ onto | L \. 
If a is a vertex of K, then the order of <j>(a) is not two since order is a 
topological property. So </>(a) is a vertex of L. Hence L has at least 
as many vertices as K. Similarly, using cj>~1 instead of <j> we obtain 
that K has at least as many vertices as L. So K and L have the same 
number of vertices. Therefore, v: K—+L defined by 

v(a) - 0(a), a G K° 
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is a vertex transformation of K to L taking K° onto L° in a 1-1 fashion. 
We will now show that v is admissible. If a0, a1 span a 1-simplex of 

K, then via0), v(al) span a 1-simplex of L since via0), v(al)(~:L0 are 
the end points of the arc ^ t j a 0 ^ ] which contains no other vertices 
of L. So v is admissible. A similar argument shows v1 is also an 
admissible vertex transformation. Hence v induces an isomorphism 
of K onto L. 

THEOREM 4. If K and L are trim n-complexesy then K and L are 
isomorphic iff | JKT1 j and IL1! are homeomorphic. 

PROOF. Suppose \KX\ and \LX\ are homeomorphic. Then since 
they are taut , we have Kl and Ll are isomorphic by Theorem 3. Since 
K and L are full, Theorem 1 applies and so K and L are isomorphic. 

THEOREM 5. If K' and V are taut n-complexes> then K and L are 
isomorphic iff \ (Kf)l\ and \ {L'Y\ are homeomorphic. 

PROOF. Suppose | (JS7)1! a n d I C^')1! are homeomorphic. Then since 
they are tau t we have (K')x and (Z/)1 a r e isomorphic by Theorem 3. 
So Theorem 2 applies and we have that K and L are isomorphic. 

(K) 

(L) 
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EXAMPLE 1. Let K = (sD' and L = K'. Then K and L are noniso­
morphic full 1-complexes and | i£ x | and \Ll\ are homeomorphic. 
This shows the need for requiring tautness in Theorems 4 and 5. 

EXAMPLE 2. Tha t tautness of K and L is not a strong enough re­
quirement in Theorem 5 is shown by the preceding example of two 
taut nonisomorphic 2-complexes with ((i^')1! and ICL')1! being 
homeomorphic. 
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