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1. Introduction. Let W be an open set in Rr, real r-space, and let 
ƒ: WXI—*Rr be a continuous function, where / denotes the integers. 
Consider the difference equation 

(1) Jn+i = ƒ(?», n). 

I t is easy to see that for every point (y, N) in WXI there is a solution 
<l>(n) of (1) that satisfies <1>(N) =y. This solution is defined and unique 
on some set N^nKN*» where N<» is maximal. (That is, either iV» = °o 
or ^ i V ^ — l) (£W.) The solution may or may not be continuable for 
n<N but, even if it is, the continuation may not be unique. Let 
#(?>ƒ> rc)> 0^w<iV o o(^ , / ) , be the solution of (1) that satisfies<f>(y,f, 0) 
= y. 

One can view the f unction ƒ defined on WXI as the restriction of 
a continuous function defined on WXR, where R denotes the real 
numbers. This viewpoint will be assumed in the sequel. 

Our problem is to find sufficient conditions such that Equation (1) 
has a periodic or almost periodic solution. We shall consider only 
functions ƒ (y, t) tha t are uniformly almost periodic. This means that ƒ 
is uniformly continuous on each set KXRy where K is compact in W, 
and for each x, ƒ(#, t) is Bohr almost periodic in t. Our principal result 
states that under certain stability conditions Equation (1) has an 
almost periodic solution. If ƒ is periodic in /, with integral period, then 
we are able to prove the existence of a periodic solution. 

Let ƒ be a uniformly almost periodic function defined on W XI and 
let {ƒ&: kÇzl] be the space of translates of/, where ƒk (y, n) =f(y, k+n). 
The hull of/, H (J), is defined to be the closure of {fk: & £ / } in the 
topology of uniform convergence on sets of the form KXI, where K 
is compact in W. (For the uniformly almost periodic functions this is 
the same as the closure of {ƒ&: & £ / } in the compact-open topology 
[8].) In addition to Equation (1) we shall be interested in the solutions 
of 

(2) yn+i =f*(yn, »), 

w h e r e / * € H ( / ) . 
1 This research was supported in part by NSF Grant No. GP-3904. 
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2. Definitions and statement of results. A solution <f>{n) of (1) is 
said to be positively compact if the set {<t>(n): 0^n<Nw} lies in a 
compact set in W. (In this case JVoo = °°.) A solution <f>(n), w^O, is 
periodic if there i s a Z ^ l such that <t>(n+K) =</>(n), for all n*zO. A 
solution <t>{n)y w^O, is almost periodic if for every e > 0 the set 

{k G / + : | 4>{n + k) - 0(») | ^ € for all w in ƒ+} 

is relatively dense in J+ , where / + = { w : w ^ 0 } . 
We now define three types of stability. First assume that 0(~W 

and /(O, n) = 0, w^O. Then 0 (0 , / , w) = 0 is the m*W solution of (1). 
We say that the null solution is: 

(i) uniformly stable if there is a continuous, strictly increasing func­
tion a(r) defined for O ^ r ^ a with a(0) = 0 and such that 

(3) \*(y,fk,n)\ ga(\y\), (\y\ a a , 0 ^ , 0 ^ ) ; 

(ii) uniformly asymptotically stable if there is an a(r) as in (i) and 
a positive, decreasing function c(w), with cr(w)—> 0 as n—» <*>, such that 

(4) | *(*ƒ*,») | SS«(MM») , (| y | £ * , 0sS*,0s£»); 

(iii) sfoè/e under persistent disturbances if for every e > 0 there is a 
5 > 0 such that 

\<t>(y,fk + gk,n)\ :g e ( 0 ^ , 0 ^ ) , 

whenever | y | ^ 5 and g: WXl—*Rr is continuous and satisfies 

(5) \g(y,n)\ ^ 5, ( | y | £ €, 0 £ »). 

If </>(n) =<t>(y> ƒ, n) is an arbitrary solution of (1), then we say that 
</> is—stable whenever the null solution of 

yn+i = f(yn + *(»), n) - ƒ(*(»), ») 

is—stable. 
We are now able to prove the following results : 

THEOREM 1. Let f: WXR—>Rr be uniformly almost periodic. Assume 
that there exists a positively compact solution of (1) that is stable under 
persistent disturbances. Then there exists an almost periodic solution 
for every Equation (2) in H (J). In particular, Equation (1) has an al­
most periodic solution. 

THEOREM 2. Let f: WXR—*Rr be continuous and periodic in t with 
integral period. 

(A) If there exists a positively compact solution of (1) that is uni­
formly stablef then there exists an almost periodic solution of (1). 
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(B) If there exists a positively compact solution of (1) that is uni­
formly asymptotically stable, then Equation (1) has a periodic solution. 

3. Outline of proofs. These theorems are closely related to cor­
responding results [ l ] , [6], [7], [8], [9] for ordinary differential equa­
tions. The proofs consist of appropriate modifications of the per­
tinent results from these papers. 

The arguments in the above cited papers are based on two facts, 
[l, Theorem 5] and [7, Theorems 1 and 2], from the topological dy­
namics of continuous flows. Here we need the analogous statements 
for discrete flows. These analogues are proved in the same manner. 
(See [2] for a unified treatment of this basic theory.) 

In order to apply these results to the problem at hand, we (for­
mally) define the mapping 

(6) x(y, ƒ*, n) = (*(y, ƒ*, n), ƒ„*), (0 ^ n). 

The domain of TT is a subset of WXH(f) X / + with range in WXH(f). 
When W has the usual topology and H(f) the compact-open topol­
ogy, the function IT is a "local dynamical system," in the sense defined 
in [8] but appropriately modified for discrete flows. Let us note that 
if there is a solution <£(:>>,ƒ, n) that is positively compact, then there is 
a nonempty subset LB in WXH(f) with the property that IT is a 
(discrete) flow on LBXI+. (See [6] or [8].) 

The remainder of the proof is essentially analogous to the cor­
responding arguments for ordinary differential equations. (See in 
particular, [l, Theorem 6], [6, Theorem 2] and [7, Theorem 4] . We 
omit the details. 

One may ask whether the assumption of "stability under persistent 
disturbances" can be replaced by "uniform asymptotic stability." It 
is known [3] that for ordinary differential equations, uniform asymp­
totic stability is stronger than stability under persistent disturbances. 
This is proved by constructing a suitable Lyapunov function. These 
techniques have been extended to studying the null solution of differ­
ence equations [5 ], provided the function ƒ satisfies : 

(0 \f(y, » ) -ƒ (* , n)\£Ka\y-z\, (O^n, \y\ ^a, \z\Sa), where 
i£aàO, and 

00 \f(y> n)\ à/3(|:y|), (Ogw, \y\ g a ) , where /3(r) is positive for 
r>0. 

Unfortunately condition (ii) is somewhat unnatural, and it is diffi­
cult to test when one is examining an arbitrary solution. However, by 
demanding that the Lipschitz constant Ka is small, we can eliminate 
condition (ii). 

file:///z/Sa
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LEMMA. Let f (0, n)=0,n^O, and assume that there is a K, 0 SK < 1, 
such that 

(7) | / ( y , n ) - ƒ ( * , » ) | gK\y-z\, (0 g », | y | ga,\z\ga). 

If the null solution of (1) is uniformly asymptotically stable, then it is 
stable under persistent disturbances. 

The proof consists of showing that if 

£(?>ƒ> ft w) = 4>(y, f + ft w) - 0(y, ƒ, w), 

and \y\ is sufficiently small, then 

I *(y, ƒ + ft ») | â | *(?,ƒ, ») I + *(1 + * + • • • + K»), n ^ 0, 
where g(y, w) satisfies (5). It follows then that if \y\ is sufficiently 
small, then 

I *(y, ƒ+« ,» ) | S «( | y I M») + 8(1 - K)-\ 
which implies the desired conclusion. 

COROLLARY. Assume that f : WXR—*Rr is uniformly almost periodic 
and satisfies (7) everywhere where 0^K<1. If there is a positively 
compact solution of (1) that is uniformly asymptotically stable, then 
Equation (1), and every Equation (2) in H(f), has an almost periodic 
solution. 

4. Remarks. 1. These results are more general than the corre­
sponding results of A. Halanay [4] who considered small perturba­
tions of stable linear difference equations. 

2. One could formulate a stronger form of Theorems 1 and 2 by 
requiring that the given solution be stable with respect to an ap­
propriate set. However, it appears that the given hypotheses will be 
more practical for applications. 

Added in proof. By constructing a suitable Lyapunov function, 
R. D. Driver [lO] is able to prove the above lemma without assuming 
that K<\. I t then follows that one can remove the restriction K<\ 
in the above corollary. 
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