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Suppose fEL(R), =1, R a cube in E* Then one knows from
Sobolev’s theorems [5] that the potential

0.1) P—)Lf(Q)lP-—-QI‘"”dQ, 0<a<i,

is in L°(R), o~1>a—1+4r"1, where IP—Q[ denotes the Euclidean
distance between P, QS E™.

In this note we demonstrate a certain converse proposition. For a
non-negative function fEL7(R), r=1, we assume the potential (0.1)
to be in L*(R), 0=s~*<a—1-+47r"! (s a positive real number or «),
and in addition make an assumption on the “oscillations” of f (cf.
§1). Then we can conclude that f is summable to powers exceeding .

We express the so-called “oscillatory” conditions and present the
main theorem, Theorem A, in the next section. The proof of the theo-
rem is direct and simple. In §2 we state a parallel theorem, Theorem
B, wherein the assumption on the potential is replaced by the hypoth-
esis that the function is in some “Morrey class” (cf. Morrey [3]; or
also Campanato [1]). Theorem B is described perhaps more accu-
rately as a corollary to the proof of Theorem A. In the last section,
§3, we show how these results can be indirectly deduced. Therein we
use a lemma from a paper by Semenov [4] which relates “Marcin-
kiewicz classes” (cf. e.g., Zygmund [6]) with “Lorentz” spaces. The
conclusion follows then from the inclusion relations between Lorentz
spaces and Lebesgue spaces (cf. Lorentz [2]).

1. The principal resuit. Let f be a non-negative function summable
over R, a cube in E” For S any measurable set in E* we indicate
its (Lebesgue) measure by meas S. Set

@1.1) E(x) = {P:PE R, f(P)> x}.
ConpitioN I. For some ¢>0, 0=A=1 (¢ may depend on A)

! This work was supported in part by the Office of Naval Research under Contract
No. Nonr-710(54).
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(1.2) x(meas E(x))™ < sup fcf(Q) dQ, x> a,

where the supremum is taken over all parallel subcubes CCR with
volume meas E(x). Denote by X the infimum of the set of numbers A
for which (1.2) holds.

If one considers the inequality (1.2) for some fixed x, then it can
be interpreted as a condition on the dispersion of the set of points
where the function assumes large values (exceeding x). It is for this
reason that we refer to the foregoing as a condition on the oscillations
of a function (and, similarly, for the alternate conditions presented
later in this section).

REMARK. One property of the quantity X is that its reciprocal
measures what one might describe as the upper bound (with respect
to the exponent) of the Lebesgue classes of f. That is, f is at best in
LY/*, This observation, however, is seemingly not very interesting.
For consider the situation on the line: #=1, R and C intervals. It is
clear that for a monotone function A =0. Whereas there are monotone
functions in L? and not in L*#*¢ for any p and ¢>0.

THEOREM A.? Suppose fEL(R), r=1, and the potential (0.1) is in
L*(R) where 0Ss 1<a—1+47r"1 If A\<a—1+r"1—s"1, then fEL?(R)
for p<(l—a+s"14X)"L

Proor. It follows simply using Hélder’s inequality that

1) f . fn f(Q)| P — Q|-*»dQ dP £ (Constant) (meas C)—*".
Now the left side in (1) dominates the quantity
) (dia = (meas ©) | 1(0) 0.
From (1), (2) and the fact that (dia C)»=#»"/2(meas C) we find that
1.3) fc f(Q) dQ £ (Constant) (meas C)=—*".
Set A=X-+e€ where ¢>0 is any number satisfying the inequality

A+e<a—1+4r1—s-1 Then on combining (1.2) and (1.3), for suffi-
ciently large x, it follows that

? This theorem was presented in preliminary form at the 69th Summer Meeting,
American Mathematical Society, Amherst, Massachusetts, August 25-28, 1964.
Notices Amer. Math. Soc. 11 (1964), 574.
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x(meas E(x))" £ (Constant) (meas E(x))**";
or
1\ VO —ata™h
3) meas E(x) < (Constant) (——) .
x

The desired conclusion results from (3), the boundedness of
meas E(x), and the fact that

f [f@]rdo = ?fw(meas E(x))x7 dx.
R 0

We shall present now two other conditions that can be used instead
of Condition I. The three conditions are ordered according to increas-
ing relative strengths.

ConpitioN II. Let f*=f*(), 0 <t <meas R, be a decreasing func-
tion equi-measurable with f. Set

log (sup fc f(P)dP / fo 'f*(t)dt)
(1.4) p = lim sup

£—0 log 2

where the supremum in the numerator is to be taken over all parallel
subcubes CCR with volume .
ConprtioN III. Suppose meas E(x) >0, x>0. Set

! E() N C
(1.5) 1+ » = lim sup og[sup meas(E(x) N C)]
g log(meas E(x))

where sup meas (E(x)N\C) is taken over all parallel subcubes CCR
with volume meas E(x).

REMAREK. The theorem then holds with p or » in place of X.

We observe further that a more local type theory could be de-
veloped based on local conditions similar to the above. For example,
consider Condition 1I: For P fixed in R formulate (1.4) for a cube
with center P and contained in R. Then shrink the cube down to P.

2. A parallel theorem. Let .S be a bounded open set in E* of diam-
eter p,. Denote by B(P, p) the ball with center P and radius p. Let
g and & be real numbers where ¢=1 and 0=<6=#. A function f is
said to be in the Morrey class L(@¥(S) if there exists a constant K
such that

(2.1) [ J@lds ke
B(P.)NS
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for all PES and 0Zp=p0.

We apply this definition in a slightly modified form. Here S is R,
a cube in E». We take cubes C=C(P, p) of diameter p centered at
points P of R instead of balls. Then we replace relation (2.1) by the
equivalent relation

2.2) ([ il 40) " 5 K(meas O

where 0 =3 =<¢~'. We denote the corresponding class now by L(«#(R).

THEOREM B. Let f be a non-negative function in LA (R). If A<
then f& L?*(R) where p <(qg~1—B+N)"L.

The proof parallels that of Theorem A. Instead of relation (1.3) we
deduce in this case using Holder’s inequality and (2.2) that

f f(Q) dQ = (Constant) (meas C)'—¢ 8.
¢

The proof is completed then just as in the proof of Theorem A.

3. An indirect proof. A function f measurable on R is said to be
in the Lorentz space M(y), 0=v =1, provided that

J 7
2.

(3.1) Wl =  sup

0<g<meas R

where f* =f*(t),0 <t <meas R, is a decreasing function equi-measura-
ble with |f].

We shall say that a function f in R is in the Marcinkiewicz class
M(y), 0=y =1, if it satisfies the condition

3.2) sup x(meas E(x))" < «
o<z w

where meas E(x) is the distribution function of |f].
The following lemma which relates Lorentz spaces and Marcin-
kiewicz classes appears in [4].

LeEMMA. The Marcinkiewicz class M () coincides with the space M(v).
In addition

sup x(meas E(x))*" § “ f” ueyy = v~!sup x(meas E(x)).
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Now consider again the proof of Theorem A. We deduce from (3.2),
using relation (3) in the proof, that fEM(ae—X—s71). Then on apply-
ing the Lemma it follows that f& M(a—\—s"1). The desired conclu-
sion is derived finally from the inclusion relation M(y) CLG—7,
v <.

REFERENCES

1. S. Campanato, Proprietd di inclusione per spazi di Morrey, Ricerche Mat. 12
(1963), 67-86.

2. G. G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37-55.

3. C. B. Morrey, Multiple integral problems in the calculus of variations and
related topics, Univ. of California Publ. Math. (N.S.) 1 (1943), 1-130.

4. E. M. Semenov, A scale of spaces with an interpolation property, Dokl. Akad.
Nauk SSSR 148 (1963), 1038-1041=Soviet Math. Dokl. 4 (1963), 235-239.

5. S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. 4 (1938), 471-497;
English transl., Amer. Math. Soc. Transl. (2) 34 (1963), 39-68.

6. A. Zygmund, Theorem of Marcinkiewicz concerning interpolation, J. Math.
Pures Appl. 35 (1956), 223-248.

UNIVERSITY OF MINNESOTA



