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I t is well known tha t there exists a unique solution of the minimal 
surface equation 

(1 + q*)r - 2pqs + (1 + p*)t = 0 

in a bounded convex domain £>, taking arbitrarily assigned continu­
ous data on the boundary of Z>. On the other hand, the celebrated 
solution of H. F . Scherk [6], given by the function 

u = log cos x — log sin x, 

takes the boundary values plus infinity on the vertical sides of the 
square \x\ < T T / 2 , \y\ <7r/2, and the boundary values minus infinity 
on the horizontal sides. This suggests the possibility of posing a 
boundary value problem for the minimal surface equation in which 
infinite data is assigned on certain boundary arcs of D. I t is a conse­
quence of previous results of the authors (cf. [3, Lemma 6]) that if u 
is a solution in a convex domain D which assumes the value plus in­
finity or minus infinity on a boundary arc of D> then the arc must 
necessarily be straight. This being the case, the most general bound­
ary value problem with infinite data takes the following form. Let D 
be a bounded convex domain whose boundary contains two families of 
open straight segments Ai, • • • , Ak and B\% • • • , Bu such that no 
two segments Ai and no two segments Bi have common endpoints. 
The remainder of the boundary then consists of open convex arcs 
Ci, • • • , Cm and endpoints of the segments Ai and Bi. It is now re­
quired to find a solution of the minimal surface equation in D which 
takes the value plus infinity on each segment Ai, the value minus infinity 
on each segment B^ and assigned continuous {though not necessarily 
bounded) values on the remaining arcs d. The solution of Scherk, for 
example, corresponds to the case where D is a square with plus in­
finity assigned on the horizontal sides and minus infinity assigned 
on the vertical sides, the family {d} being empty. 

Notwithstanding this example, one might a t first suppose tha t the 
problem as stated is not well posed. This turns out, however, not to 
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be the case. We shall in fact give simple necessary and sufficient con­
ditions for the problem to be solvable, conditions which depend only 
on the relative geometry of the arcs Ai and Bi. 

Let (P be a simple closed polygon whose vertices are drawn from 
among the endpoints of the segments Ai and Bi. Let a denote the 
length of G>r\{Ai}, let (3 denote the length of (pn{jBt}, and let the 
perimeter of (P be denoted by 7. Then the following results hold. 

THEOREM 1. Assume that the family {d} is nonempty. Then there 
exists a solution of the minimal surface equation in D which assumes the 
value plus infinity on each A^ minus infinity on each Bi, and assigned 
continuous values on each d, if and only if 

2a < y and 2/3 < y 

for each polygon (P of the type defined above. The solution is unique if it 
exists. 

THEOREM 2. If the family {d} is empty, then there exists a solution 
of the minimal surface equation in D which takes the value plus infinity 
on each Ai and minus infinity on each Bi if and only if 

2a < y and 2/3 < y 

for each polygon (P which with its interior is properly contained in T), and 

a = p 

for the polygon (P coinciding with the boundary of D. If it exists, the 
solution is unique up to an additive constant. 

Some special cases are of interest. If D is a convex quadrilateral 
with sides A\, C\, A2, C2 in that order, then the necessary and suffi­
cient condition for a solution to exist reduces simply to 

Mil + M2| < |Ci| + |C.|, 

that is, the sum of the lengths of the sides on which infinite data is 
prescribed should be less than the sum of the lengths of the sides on 
which continuous data is prescribed. If the sides of D are A\, Bi, 
A2, Bi in that order, then the necessary and sufficient condition for a 
solution to exist becomes 

\AX\ + \A2\ = \B1\ + \B2\. 

We note further that a regular 2n-gon with boundary values plus 
infinity and minus infinity assigned on alternate sides also satisfies 
the conditions of Theorem 2. The simplest case of Theorem 1, in 
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which there is only one Ai and the data is continuous on the re­
mainder of the boundary has been noted by R. Finn (cf. [l, Theorem 
VIII . 1]). 

We outline here the existence proof for the special case of Theorem 
1 when the family {J3»} is empty. The demonstration rests heavily on 
the following result obtained in [3]. 

MONOTONE CONVERGENCE THEOREM. Let {un} be a monotonically 
increasing sequence of solutions of the minimal surface equation in a 
domain D. If the sequence is bounded at a single point of D, then there 
exists a nonempty open subset U of D such that {un} converges to a 
solution in U, and diverges to infinity on the complement of U> More­
over, the boundary of U consists of interior chords of D and arcs of the 
boundary of D. 

Further information on the structure of the domains of convergence 
and divergence can be obtained by studying the conjugate function 
xj/, which arises by integrating the exact differential 

P ? <M = -— dy dx 

corresponding to a given solution u (here p=*ux, q = uy, and W 
*=(l+p2+q2)112 in the usual notation). We first observe that | V^ | 
= | V# | /W<1 in the domain D of a solution. Thus if C is a piece-
wise smooth curve lying in the closure of D, we have 

a) I r # u \c\. 
I t can be shown further that if C is a convex boundary arc of D, and 
if u is continuous in D^JC, then 

(2) |J#|<|C|. 
On the other hand, using techniques developed in [2], [3], [4], to 
estimate the gradient of a solution u, we have 

(3) f # = M 
for any positively oriented boundary segment T of D where u takes 
on the value plus infinity (this relation is heuristically evident from 
the behavior of the gradient of u near T). Similarly, if {un\ is a 
sequence of solutions which are continuous in DVJT, and if the se-
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quence remains uniformly bounded on compact subsets of D while 
diverging uniformly to infinity on T> then 

(4) Km ƒ#„*= | r | . 

The same conclusion holds also if the sequence remains uniformly 
bounded on compact subsets of T, while diverging uniformly to in­
finity on compact subsets of D. 

By integrating d\[/n around suitably chosen closed contours in 35, 
and using the evident condition j>*d\l/n = 0, the following results sup­
plementary to the monotone convergence theorem are easily estab­
lished. 

1. No component of the set of divergence can consist of a single 
interior chord of D. 

2. Two interior chords of D which form part of the boundary of U 
cannot have a common endpoint. 

3. Let C be an open convex boundary arc of D. Then an interior 
chord of D which bounds U cannot terminate at C if (i) the functions 
un are continuous in DKJC and uniformly bounded on C, or if (ii) the 
functions un are continuous in DKJC and diverge uniformly to in­
finity on C. 

Turning to the proof of Theorem 1 in the case where the family 
{Bi} is empty, let ƒ denote the assigned continuous data on the arcs 
d. Let un be the solution of the minimal surface equation in D such 
tha t un — n on each segment Ai and ww = Min(w, ƒ) on each arc d. 
The existence of the functions un follows directly from the results of 
Nitsche [5], or Finn [ l ] . Now by the generalized maximum principle 
(cf. [5]) the sequence {un} is monotonically increasing in D. The 
monotone convergence theorem is therefore applicable, and the se­
quence {un} converges to a solution u in a (possibly empty) open set 
U in D. Let V denote the complementary set. The results above imply 
tha t any component of V must be bounded by a simple closed poly­
gon (P whose vertices are among the endpoints of the segments A^ 
Letting Q=*<S>r\{Ai) it follows from (4) tha t 

I f I 
lim I d\pn ~ y — a. 

n-»« IJ (P-Q, I 

On the other hand, from (1), 
I C I 

lim I dypn S a. 
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But ^ ( p # w = 0, and this contradicts the assumption 2a < % Thus 
the set V must actually be empty, and {un} converges to a solution 
in all of D. Tha t the limit function assumes the value plus infinity 
on each segment Ai is obvious, and that it takes the values ƒ on each 
d follows from a barrier-type argument. 

The condition 2a <y can easily be shown necessary for the existence 
of a solution, using the relations (2) and (3). 

To obtain the general case of Theorem 1, and also to prove Theo­
rem 2, we again use approximating sequences of solutions {un}. In 
these cases, however, it is not convenient to construct the sequences 
so that they are monotonically increasing. Rather we use the special 
case whose proof is outlined above to establish the existence of solu­
tions which majorize the approximating sequences. The required con­
clusions are then obtained by compactness and barrier arguments. 

Added in Proof. If the boundary value problem is to be solvable 
for arbitrary continuous data, then the domain must be convex, 
(cf. the famous example of H. A. Schwarz.) Nevertheless, Theorems 
1 and 2 can be generalized essentially without change to nonconvex 
and even multiply connected domains which are bounded by families 
of convex arcs. Thus once one admits the possibility of discontinuities 
in the data at a finite set of boundary points, it is no longer necessary 
to retain the hypothesis of convexity in order to have a well-posed 
problem. The complete proofs of Theorems 1 and 2, and the details 
of the generalization to nonconvex domains will appear elsewhere. 
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