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The purpose of this paper is to introduce certain interpolation 
methods (interpolators) which lead to a proof of Marcinkiewicz's theo­
rem. We start with some definitions. 

An interpolation pair is a couple of Banach spaces continuously 
contained in a Hausdorff topological vector space V. 

On the vector spaces A1+A2 — (wGF: u*=v+w, vÇ^Ai, wÇzA?] 
and AiC\A2 we introduce the norms 

IMUrMi =inf{||ZJ||^X + IHU,: v + w = u} v £ Au w G A2}, 

MUifU, =max{||w||Al, \\u\\A%}i 

with these norms, A1+A2 and A%C\A2 become Banach spaces. 
An interpolator F is a function defined on interpolation pairs whose 

values are Banach spaces F(A\, A2) such that: 
(1) -4in^42C^C4i, A2) C.A1+A2, the inclusions being continuous; 
(2) if (Xi, X2), (Fi, Y2) are interpolation pairs, and T is a linear 

map of Xi+X 2 into Y\+ Y2 which maps Xi into Y\ and X2 into F2 

and which decreases the norms, then T is also a norm decreasing 
map of F(Xi, X2) into F(Ylf F2). 

We will say that F(Au A2) is an intermediate space between Ai 
and A 2. 

The functions considered in the following are complex-valued func­
tions defined on a totally er-finite measure space (M, m). The dis­
tribution function of ƒ is 
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D(f,\)=m({xeM: \f(x)\ > x}); 

the nonincreasing rearrangement of ƒ is denned by 

J*(t)-iai{\:D(f,\)£t), 

and the average function of ƒ by 

t J o 

We define 

i /« 

(Dl £«<» 

<-^7 f f**(t)n«ir-1 dt\ iîl<p< oo, l£q< 

sup tv*f**(t) iil£p<oo,q=ooy 

J» oo 

ƒ*(/ )# if * = 1, 1 g q% oo, 
.. - o 
sup ƒ**(/) if p = oo, 1 g g g oo. 

oo. 

*>0 

For Kp^ oo, the set {fELx+Lw: ||/||z,pa< oo } is the well-known 
Lorentz space Lpq (see, for instance, [3]) with a slightly different 
norm. With our definition, the Lpq norm of a function ƒ G ^ ^ L 0 0 is a 
continuous function of (p, q) for 1 ^p ^ oo, 1 <Zq<; oo, and reduces to 
the L1 norm f or p = 1. A direct computation shows that ||/|| L^ = ||/|| LP 

if ƒ is the characteristic function of a measurable subset of M. Another 
advantage of our definition is that the Lp\ and Lpoo spaces can be char­
acterized as the minimum and maximum among the intermediate 
spaces C between L 1 and L°° such tha t | | / | |c = |l/IUp f ° r e v e r Y char­
acteristic function/. More precisely: 

THEOREM 1. Let 1 ^ £ < oo. Let C be an intermediate space between 
Ll and L°° such that | | / | |C = | | / | | L P for every characteristic function ƒ. 
Then Lp\CCQLpw continuously, and 

IWk.s l l / l l «* l l / l l v 
the first inequality being valid for every ƒ G C and the second for every 
fGLpl. 

If / is a positive real number, we denote by tA the Banach space 
obtained from A by changing its norm || U^ by 

Il IU = i/<ll lU-
The following theorem has been proved in [2]. 
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THEOREM 2. IffGH+L" and *>0, then f**(f) H I / U ^ + L » . 

This result leads to a natural generalization of the average function. 
DEFINITION. If (Au At) is an interpolation pair and u£:Ai+A%, 

we define the average function of u with respect to (Au A2) as the 
function 

u**(t) = u**(Ah A2; t) = \\u\\Ul+Ar 

We now list some properties of u**(t). 
(1) For every J>0, u**(t) is finite. 
(2) u**(f) is nonincreasing and continuous, tu**(f) is nondecreas-

ing. 
(3) u**(Al9 A2; t) = (l/t)u**(A2f AD l/t). 
(4) u**(t) tends to zero when t tends to infinity for every u in 

Ai+A2 if and only if A\C\A2 is dense in A2. 
(5) tu**(t) tends to zero when t tends to zero for every u in 4i+i4 2 

if and only if AiC\A2 is dense in Au 
(6) sup*>o u**(t) Z£\\U\\AV the equality sign holds for every u in A2 

if and only if the unit sphere of A2 is closed in ^4i+^42. 
(7) supt>otu**(t) ^\\U\\AV and the equality sign holds for every 

u in Ai if and only if the unit sphere of Ai is closed in Ai+A2. 
(8) Let u<E:Ai+A2 and denote 

<t>(3) - inf{|MU«: (1/0||« - w|Ui + N U i ^ w**(0 + *K 
«*(/) = w*(^1} A2\ t) = lim 0(6). 

Then w*(/) is nonincreasing and right continuous, and 

1 r* 
u**(Au A2\ i) = — I w*(̂ 4i, ^2*, s) ds. 

t J o 

We define, for uÇLAu+A* H^UL^AI, A2> as in (1), but writing 
u**(Au A2; t) instead of ƒ**(/). It can be shown that H^HL^UI,**) *S 

a norm, and denoting 

LPq(Ah A2) - {u G Ai + A2\ I M I ^ A ^ ) < °°}, 

the function (Au A2)-*LPq(Au A2) turns out to be an interpolator. 
We now compute the average function in some particular cases. 

THEOREM 3. Let l^>pi<p2<
Q0, l/p = l/pi — l/p2; then 

ƒ C-^Pl.l) Lp2tl'y t) 

(2) = I f*(s)sliK-1 ds + — I f(s)slf^1 ds. 
pit J o p2Jtp 
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For p2** oo, the right-hand side of (2) reduces to the first termt with 

THEOREM 4. Let 1 ggi, g2é °°, 21?%; ttw 

H(f) = inf sup 
oza^i s>o (1 - aitsrUn + as"11** 

Using these results it is not difficult to determine the result of 
applying an Lpq interpolator to couples of Lorentz spaces. 

THEOREM 5. Let l^pi<p%^ <», l < £ < ° o , l ^ r â <*>, 

(3) 1/p = l/(pxk) + l/(p#), l/p - 1/pi - 1/p* 

Then Lpr is continuously contained in Lkr(LPl,i9 £P2,i), and 

/ fikk'\1/r' 
WfhtAL^i.L^) â (~-r) fll/lk,-pp' 

THEOREM 6. Let l^#i , 52a0 0 , <Zî g2, -Mi, M2>0, Kfe<oo, 
1 ^ r g 00, awd 

(4) 1/q = 1 / M ) + \/(qJt), 1/T = l/?i - l/ji-

77&e# Lkr(MiLqiO0, M2I/ç2oo) w continuously contained in Lqr, and 

ƒ I„r = ^ ) * f l -M* ƒ ^ ( J f i i f t o o . l f ^ o o ) . 

The following theorem is an immediate consequence of Theorems 
5 and 6. 

THEOREM 7. Let T be a linear operator defined on Lir\L* such that 
\\Tf\\Lq^M\\f\\Lpil for every fGL^L», i = l, 2, with l ^ S » , 
1̂ <Z**̂  °°» Pi<p2, <Zi7̂<Z2- rfe^w, i / l ^ r g o o , Kfe<oo, r caw &e ex-
tended to a continuous linear operator from Lpr into Lqr such that 

wfeere ]8 awd 7 are tóe quantities defined in (3) and (4). 

Theorem 7, due to A. P. Calderón (1), implies Marcinkiewicz's 
theorem except for the case pi~q%~l. In order to include this case 
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we would need an inequality similar to (5), but replacing ||Ty||z, in 
the left-hand side by 

{ f (Tf)*(t)n«i*~l dt 

Such an inequality has been obtained, even with more generality 
(see [4]). We can also obtain it without essential modification of our 
methods using the fact that 

(6) (g + *)*(/) £ f(f/2) + h*(t/2). 

However, the interest of our proof lies in the fact that Theorem 7 
has been obtained from the general theory of interpolation and we 
don't yet know if an inequality similar to (6) holds in general for 
u*(Au A2; t). 
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