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L, INTERPOLATORS AND THE THEOREM
OF MARCINKIEWICZ
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Communicated by A. Zygmund, July 27, 1965

The purpose of this paper is to introduce certain interpolation
methods (interpolators) which lead to a proof of Marcinkiewicz’s theo-
rem. We start with some definitions.

An interpolation pair is a couple of Banach spaces continuously
contained in a Hausdorff topological vector space V.

On the vector spaces Ai+A4,={uCV:u=v+w, vE4;, wCA4,}
and 41N A, we introduce the norms

llodlaseas =in{[[ol]a, + [|wllay: v+ 2 = 4,9 € 41, w € 4o},
[I“llAlnAz =max{“““41’ ”u”Aa};

with these norms, 4;+ A4, and 41N\ A; become Banach spaces.

An interpolator F is a function defined on interpolation pairs whose
values are Banach spaces F(4;, 4,) such that:

(1) AiNA;CF(A4, A;) CA1+A4., the inclusions being continuous;

(2) if (X1, X2), (Y4, Y3) are interpolation pairs, and T is a linear
map of X1+ X, into Y1+ ¥, which maps X, into Y; and X, into ¥,
and which decreases the norms, then T is also a norm decreasing
map of F(Xi, X,) into F(Y3, Y3).

We will say that F(4., 4:) is an intermediate space between A4,
and 4..

The functions considered in the following are complex-valued func-
tions defined on a totally o-finite measure space (M, m). The dis-
tribution function of f is
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D(f,\) = m({x € M: | f()| >\]);
the nonincreasing rearrangement of f is defined by
740 = inf{A: D¢, N) S ¢},

and the average function of f by

40 = % J ) ds.

We define

q © 1/q

{——,f f**(t)aele—1 dt} fl<p<ow,15¢g< o,
PP Yo

sup £2f**(1) HlSp< w,g= o,

Oz =1 " -
| sup ¢f**(t) = ff*(t) dt ifp=11=5¢= o,

>0 0

sup f**(z) fp=w,15¢= w.

£>0

For 1<p= o, the set {f&L'+L=: ”f”z,m< w } is the well-known
Lorentz space L,, (see, for instance, [3]) with a slightly different
norm. With our definition, the L,, norm of a function fEL'N\L* is a
continuous function of (p, ¢) for 1 Sp =< o, 1 £¢= », and reduces to
the L! norm for p=1. A direct computation shows that ||| L= I till
if f is the characteristic function of a measurable subset of M. Another
advantage of our definition is that the L, and L, spaces can be char-
acterized as the minimum and maximum among the intermediate
spaces C between L! and L* such that ||f||¢=]|f|| > for every char-
acteristic function f. More precisely:

THEOREM 1. Let 1Sp< . Let C be an intermediate space between
L* and L= such that ||flle=||fl| > for every characteristic function f.
Then Ly CCC Ly, continuously, and

Il 25 = lle = 1]z,

the first inequality being valid for every f& C and the second for every
f S Lpl'

If ¢ is a positive real number, we denote by ¢4 the Banach space
obtained from 4 by changing its norm || ||4 by

[ llea = 1/74] [l

The following theorem has been proved in [2].
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THEOREM 2. If fEL'4L* and t>0, then f**(t) =||f|| 24 2=

This result leads to a natural generalization of the average function.

DeriNiTION. If (41, 42) is an interpolation pair and u &S A4+ 4,,
we define the average function of # with respect to (4, 4,) as the
function

W) = w(4s, A2; 1) = ||uf|iarian

We now list some properties of #**(¢).

(1) For every t>0, u**(¢) is finite.

(2) u**(#) is nonincreasing and continuous, {#**(f) is nondecreas-
ing.

(3) u**(4y, Az; 8) =(1/)u**(A4s, A1; 1/1).

(4) u**(f) tends to zero when ¢ tends to infinity for every # in
A1+ A4, if and only if A1MNA, is dense in 4,.

(5) tu**(t) tends to zero when ¢ tends to zero for every  in A1+ A4,
if and only if 41MA4; is dense in A4;.

(6) supsso u**(t) <||ul| 4, the equality sign holds for every u in A4,
if and only if the unit sphere of 4, is closed in 4;+4.,.

(7) supiso tu**(f) é”u” 4, and the equality sign holds for every
u in A4, if and only if the unit sphere of A4, is closed in 4;+A4,.

(8) Let uc A1+ A4, and denote

9@ = int{||v]la: (1/D]|w — wllay + [Jwllas = w*©) + o},
wH(0) = w¥(As, As; ) = lim $(0).
&0

Then #*(¢) is nonincreasing and right continuous, and
1 t
w*(A,y, A2 1) = Tf w*(A44, Ag; s) ds.
0

We define, for € A1,+4s |||z, a1, a5 as in (1), but writing
u**(A4,, A,; t) instead of f**(£). It can be shown that IIu[l Ly,(41.49) 18
a norm, and denoting

Lpo(Ay, 42) = {4 € A1+ As: ||t 109 < =},

the function (41, A2)—L,.(41, 4,) turns out to be an interpolator.
We now compute the average function in some particular cases.
THEOREM 3. Let 1 Sp1<pe< o, 1/8=1/p1—1/ps; then
f**(Lm-I’ Lm.l; t)
1
(2 =

é 1 L)
;;j; F*(s)stm1ds 4 ;;f,a F¥(s)sirtds.
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For p.= o, the right-hand side of (2) reduces to the first term, with
B=7p1.
THEOREM 4. Let 1 Sq1, g2 = o, @15 q; then
H() S **(Lays Loy ) S 20,
where

H(f) = inf sup £

0sas1 >0 (1 — a)ts™Ha + qs—Ya
Using these results it is not difficult to determine the result of
applying an L,, interpolator to couples of Lorentz spaces.

THEOREM 5. Let 1 Sp1<prS», 1<k<»,1Srsx,
©)) 1/p = 1/(p:1k) + 1/(pk),  1/8=1/p1 — 1/p.
Then Ly, is continuously contained in Li,(Lp, 1, Ly, 1), and
BEEN\YT
”f” Lkr(LilvltLppl) —S- (’_p_p_}—) p,”f” L]:r'

THEOREM 6. Let 1=2q1, g2, q15#qs, M1, M;>0, 1<k< x,
1<r=< o, and

@ 1/g = 1/(q:k) + 1/(g2k), /v = 1/q1 — 1/ga.
Then Li(M1\L gy M2Lgy,) is continuously contained in L., and
[y | BENYT ap aw
e 5 (F255) 300 sttt

The following theorem is an immediate consequence of Theorems
5 and 6.

THEOREM 7. Let T be a linear operator defined on L*M\L* such that
| TA| g0 = Mllfll 2,1 for every FEL'NL=, i=1, 2, with 15p:S =,
1=2¢ S o, p1<ps, 17#qe. Then, if 1Ers», 1<k<w, T can be ex-
tended to a continuous linear operator from L, into L, such that

‘o I ,Ylllrﬂllr/ ,
) 7 2 = MY 15" 22 @G 1A 2.

where B and v are the quantities defined in (3) and (4).

Theorem 7, due to A. P. Calderén (1), implies Marcinkiewicz’s
theorem except for the case py=¢g1=1. In order to include this case
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we would need an inequality similar to (5), but replacing || Tf Hz,q, in
the left-hand side by

{ f: (TH)*(t)nalr dt} llq‘

Such an inequality has been obtained, even with more generality
(see [4]). We can also obtain it without essential modification of our
methods using the fact that

(6) (g + W*@®) = g*(t/2) + K*(t/2).

However, the interest of our proof lies in the fact that Theorem 7
has been obtained from the general theory of interpolation and we
don’t yet know if an inequality similar to (6) holds in general for
u"'(Al, Az; t).
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