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1. Let C be the complex field and T' be the unit circle {AEC: ||
=1}. For a non-negative integer m or for m = », let C*(T") be the
space of all m-times continuously differentiable functions on I'. (Here
we consider I' as a C®-manifold in the natural way. Thus, any
FEC™T) can be identified with an m-times continuously differenti-
able periodic function f(#) of a real variable 6 with period 2x.) C»(T")
is an algebra as well as a Banach space if m is finite, a Fréchet space if
m = o, with the usual sup-norms for derivatives.

We shall say that a mapping ¥ of T into C is a C™-curve if v can
be extended onto a neighborhood V of T' (the extended map will also
be denoted by %) in such a way that it is one-to-one on V and v and
~~!are both m-times continuously differentiable (as functions in two
variables) on V and y(V) respectively.

Let E be a Hausdorff locally convex space over C such that the
space £(E) of all continuous linear operators on E endowed with the
bounded convergence topology is quasi-complete.

2. Cm(v)-operators.

DEFINITION. Let ¢ be a Cm-curve. TE £(E) is called a Cm(y)-
operator if there exists a continuous algebra homomorphism W of
Cm(I") into £(E) such that W(1) =I and W(y) =T. If v is the identity
map: y(0) =e¥, then a C™(y)-operator is called a C™-unitary operator.
(Cf. Kantrovitz’ approach in [1].)

THEOREM 1. If T is a C™(vy)-operator, then Sp(T) Sy (T').2

If H is a Hilbert space, 7€ £(H) is a C’-unitary operator if and
only if it is similar to a unitary operator on H. In this sense, C™-uni-
tary operators on E generalize the notion of unitary operators on a
Hilbert space.

The homomorphism W in the above definition is uniquely deter-
mined by T and 4. Thus, we call W the C™(y)-representation for T.
The uniqueness can be derived from the following approximation
theorem: Given a C™-curve vy, let N\o be a point inside the Jordan curve

1 This research was supported by the U. S. Army Research Office (Durham,
North Carolina) under Contract No. DA-31-124-AR0(D)288.
1 Sp(7) is the spectrum of T in Waelbroeck’s sense. See [2] for the definition.
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v(T). Then the set {(P 04v)/(y—N\o)"; P: polynomial in one complex
variable, #: integer 20} s dense in Cn(T).

THEOREM 2. Let T be a C™(v)-operator for a Cm-curve v and let W
be the Cm(y)-representation for T.

(i) If A€ £(E) commutes with T, then A commutes with each W(f),
fecm@).

(ii) If Fisa closed subspace of E left invariant under T and (\NoI — T)~!
for some Ny inside of v(I'), then it is left invariant under any W(f),
fecnD).

3. Characterization theorem. We recall ([2] and [4]) that SE £(E)
with compact spectrum is called a Cm-scalar operator if there exists
a continuous homomorphism U of the topological algebra? C™ = C™(R?)
=(C"(C) into £(E) such that U(1) =TI and U(\) = S.* In this case, the
support of U is contained in Sp(S).

Now, we consider the following statements concerning SE £(E),
depending on m and a C™-curve v:

I,(m): S is a Cm(y)-operator.

I1,(m): S is a Cm-scalar operator such that Sp(S) Cv(T").

I1I(m): S—'€ £(E) and for each continuous semi-norm ¢ on £(E),
there exist a non-negative integer m, (=m, if m is finite) and M,>0
such that

1) g(S%) < My| k|™  forallk= +1, +2,---.
(Cf. [1].)

IV, (m): Sp(S)Cv(T') and for each continuous semi-norm ¢ on
£(E), there exist a non-negative integer m, (=m, if m is finite) and
M{ >0 such that

) gRY) < M1 forall A with 0 < dy < 1,

where Ry=M\I—S)"! for A&ESp(S) and dy=dis(\, Sp(S)). (Cf. [6].)
When + is the identity map, we omit the subscript 7 in the nota-
tions I,(m), 11,(m) and IV,(m); in particular,
I(m): S is a Cm-unitary operator.

THEOREM 3 (THE CHARACTERISATION THEOREM).

() Im)=11(m)=>111(m)=1IV(m)=1(m2). In particular, 1(»),
II(e), ITI(>) and IV(x») are mutually equivalent.

(i) I,(m)=11,(m)=1V,(m)=1,(m+2).5

3 Cm is the space of all m-times continuously differential functions on R*=C.
The topology in it is defined by sup. of derivatives on compact sets.

4\ denotes the identity function f(A) =,

§ In the implication IV, (m)=>1,(m+2), we are assuming that v is a C™*-curve.
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In particular, 1,(»), 11,(») and IV,(») are mutually equivalent.

4. Here, we shall give indications of proofs of Theorem 3, (i). The
proofs of (ii) are similar but more complicated.

I(m)=11(m): If W is the C™(e¥*)-representation for S, then we de-
fine U(p) = W(¢p(e*)) for & C™. Then U is a C™-representation for S.

I1I1(m)=111(m): Since S*=U(\¥), we obtain (1) evaluating the
norms of A* on neighborhoods of I' and using the continuity of U.

II(m)=IV(m): If |\| <1, then Ry= — D o, NeS-G+1; if |A]| >1,
then Ry= D o A=®+D Sk, Hence, (2) follows from (1).

IV(m)=I(m+2): For f& Cmt(T'), we define

1 27

W(f) = lim —{ FO)[Raseo e — Ra—e)e”]e“’d0} .
«—0+ 27 0

By a method due to Tillmann ([5] and [6]), we see that the right-

hand side is well-defined and that W is the C™*+2(e#)-representation for

S.

5. Corollary and examples.

CoRroLLARY. If S; (1=1, 2) is a C™i-unitary operator and if Sy and
S. commute, then Si.S: is a Cmitmetiynitary operator.

This is a consequence of Theorem 2, Theorem 3 and the corollary
to Proposition 3.1 of [3].

ExAMPLES. Let 8(R”) be the Fréchet space of rapidly decreasing
functions on R, [$(R")] is the space of tempered distributions. Let
E=8(R*) or [$(R")]'. The translations 7,: [7.f](x) =f(x+a) are C=-
unitary operators on E; the Fourier transform is a C2-unitary oper-
ator on E.
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