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This paper is concerned with the following problem : to what extent 
can we obtain a meaningful classification of mathematically interest­
ing formal theories by virtue of their recursive properties? Myhill's 
results on the "recursive isomorphism" of creative theories [2] indi­
cate that it may not be sufficient to identify a theory with its set of 
theorems. To what extent can a "recursive isomorphism" preserving 
the deductive structure of the theories provide a meaningful classifi­
cation? Accordingly we will concern ourselves with how a theory is 
presented in terms of axioms and rules of inference (see 2 below). 

DEFINITIONS. 1. A theory 3» is an ordered triple (Wif Tif Ri), 
where Wi is a recursive set and 7\- and Ri are recursively enumerable 
sets satisfying TiQWi and RiQWi. Theory 5,- is consistent if TiC\Ri 

= 0. _ 
Intuitively, Wi stands for the set (of Gödel numbers) of all state­

ments, Ti the set of theorems and Ri the set of refutable statements. 
Thus Wi-(TiURi) represents the set of undecidable statements. 
Note that all theories considered in this paper are axiomatizable. 
They are also assumed to be consistent. 

2. We now define a presentation. If 3 possesses negation the follow­
ing definition suffices. A presentation of a theory is an ordered pair 
(a, R), a a recursively enumerable set (the set of axioms) and R a 
recursively enumerable sequence of recursively enumerable relations 
(the rules of inference). Furthermore, <j>ÇzT if and only if <j> can be 
obtained from a finite number of members of a by a finite number of 
applications of finitely many members of R. Note tha t membership 
in R is determined by membership in T. 

If 3 does not possess negation the above definition must be modi­
fied so tha t the presentation possesses a component which generates 

1 This paper was composed while the author held several grants awarded by the 
Institute for Advanced Study (from funds the Institute obtained from the National 
Science Foundation.) 

The author would like to thank Professor Kurt Gödel for his continued interest 
over the years both in the specific results of this paper—in particular in VI and in the 
corollaries of the two main theorems—and in many other related results. 

2 Some of these results were presented to the Association of Symbolic Logic, 
April 21, 1964. 
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the refutables. One way of doing this is as follows. A presentation is 
an ordered triple (a, R, v), where a and R are as above, v is a recur­
sively enumerable relation and R= \v{<j>)\ <£GT}. Since we are as­
suming all our theories possess negation—see last paragraph of this 
introduction—the first definition will suffice for our needs. 

For technical reasons we assume our presentations (a, R) of 3 
satisfy the following property. Let cOiQW. If coi is consistent with 
respect to (a, R) and if <f>ÇzW— [T(a\j<oitR)y<JR(a\j<ei,R)], then <£ is con­
sistent with (aVJoii, R). 

3. A theory is effectively extensible if there exists a presentation 
(a, R) and a recursive function ƒ associated with this presentation 
such that , if o>» is a recursively enumerable set of sentences which is 
consistent with {af R) (in the sense that the presentation (aVJa\-, R) 
determines a consistent theory), f(i) is an undecidable sentence of 
the extension (aUwj, jR).3 

The concept of effective extensibility provides an abstract formal­
ization for the following strong form of Gödel's theorem. Given a 
particular presentation of number theory, one can exhibit an effec­
tive procedure which, when applied to a consistent axiomatizable 
extension of the theory, gives an undecidable statement of this ex­
tension. Note that distinct presentations yield distinct effective pro­
cedures since the effective method depends on the notion of a proof 
(and, hence, on the axioms and rules of inference). 

We assume that all our theories possess negation. For most of our 
theorems it is possible to obtain analogous theorems for the case in 
which the theories do not possess negation.4 

Summary of results. 
A. Negation-preserving recursive maps. The results in this section 

represent a sampling of the corollaries of two theorems. The theorems 
themselves are too complicated to state in this brief account. 

I. Let 3i and 32 be two effectively extensible theories. There exists 
a 1-1 recursive function mapping W\ onto W2, T\ onto T2j Ri onto R2, 
W\ — {TIURÏ) onto W2 — {T2\JR2) and preserving negation. 

I I . Let 5i be a consistent theory; let 32 be an effectively extensible 
theory. There exists a 1-1 recursive function mapping W\ into W2, 

* Some argument can be given for augmenting the rules of inference of the theory 
effectively. We shall not do that in this paper. In actual practice—for example, in the 
work Undecidable theories [4]—extensions of a theory usually are obtained by includ­
ing additional formulas as axioms while keeping the rules of inference the same. 

4 Added in proof, April 2t 1965. By negation we mean a unary connective satisfying 
the following: ( 1) $ G#<->neg 4> G T, (2) </>G T<->neg <f> G R\ neg is a 1-1 recursive 
function mapping W into W. 
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T\ into r2 , R\ into R2i Wi — (Ti^JRi) into W2 — (T2\JR2) and preserving 
negation. 

For theories with a presentation in standard formalization, the 
negation-preserving recursive maps of I and II can be chosen to 
preserve the deductive structure of the theories to the extent that 
first steps of a deduction in 5i are mapped onto first steps of a de­
duction in 32. More precisely, 

I I I . Let 3i and 32 be two effectively extensible theories with pre­
sentations in standard formalization. There exists a 1-1 recursive 
function mapping W\ onto W2, T\ onto T2, Ri onto R2l W\ — (T1UR1) 
onto W2 — (T2\JR2) and preserving negation such that 

(1) tautologies of 3i are mapped onto tautologies of 32, 
(2) sentences with tautologous negations are mapped onto sen­

tences with tautologous negations, 
(3) logical axioms are mapped onto logical axioms. 

Furthermore, if none of the nonlogical axioms is of the form \\p, 
where ^ is a sentence and if, in addition, the cardinal number of both 
sets of nonlogical axioms is the same, then 

(4) nonlogical axioms are mapped onto nonlogical axioms. 
IV. Let 3i be a consistent theory; let 32 be an effectively extensible 

theory. Suppose both theories have presentations in standard formal­
ization. Then there is a 1-1 recursive function mapping W\ into W2, 
T\ into T2t JRI into R2, Wi — {T\\JRi) into W2 — (T2\JR2) and preserv­
ing negation such that (1), (2), (3), (4) of I II hold. 

Theorems I - IV provide generalizations of results in [ l ] , [2], [3]. 
Note that the exact analogy of MyhiïTs theorem fails: there exist two 
creative theories 3i and 32 such that no 1-1 recursive function map­
ping Wi onto W2 and 7\ onto T2 also preserves negation. 

Since many interesting undecidable theories are effectively exten­
sible, they are "recursively isomorphic" in the sense of I or III by 
a negation-preserving recursive mapping. Thus these generalizations 
are as objectionable as MyhiU's theorem itself as a basis for classify­
ing mathematically interesting formal theories. Now the above map­
pings do not take into account much of the deductive structure of 
the formal theories. For most mathematically interesting formal theo­
ries, the deductive structure is intimately related to the deduction 
theorem and modus ponens. Hence, the preservation of the deductive 
structure is closely connected with the preservation of implication. 
We show, in contrast to the foregoing results, tha t 

B. Nonpreservation of implication. 
V. There exist two effectively extensible theories 3i and 32, each 

possessing a presentation with modus ponens as the sole rule of infer-
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ence, such that no 1-1 recursive function mapping W\ onto W2 and 
T\ onto Ti preserves both implication and negation. 

C. Effective extensibility in theories which possess some arithmetic. 
VI. Suppose 3 is consistent and has a presentation as an applied 

predicate calculus with identity which contains both a notation for 
the natural numbers and a formula x^y satisfyingthe following: 

1. For each natural number n, h-g(x) (x^n—*x = Q\/ • • • \/x = n). 
2. For each natural number n, I—g(#) ( x g w V w ^ x ) . 

Suppose that every primitive recursive function of one argument is 
definable in 3. 

Then there is a formula $(x), with one free variable, such that, if 
o)i is a recursively enumerable set (of Gödel numbers) of sentences 
consistent with 3, then the formula <£(*)—with Gödel number </>(i)— 
is an undecidable sentence of the extension obtained by adding as 
axioms all sentences SP" such that the Gödel number of SP belongs to c^. 

I t is obvious that all theories which satisfy the hypothesis of VI are 
effectively extensible. These theories include any consistent exten­
sion of the theory R of undecidable theories. Thus, any consistent ex­
tension 3 of R has the property that undecidable statements of con­
sistent extensions of 3 may be chosen as substitution instances of one 
specific formula of the theory. 

D. Relation between effective extensibility, and effective inseparability. 
VII. If a theory is effectively extensible with respect to one pre­

sentation, it is effectively extensible with respect to all. 
VIII . A theory is effectively extensible if and only if it is effectively 

inseparable (see [3] for definition). 
IX. The f unction ƒ which witnesses the fact that a theory is effec­

tively extensible may be chosen to be of the form ƒ(x) =gt(x), where 
g is a recursive permutation and t is a primitive recursive function. 

The proofs of the two theorems of which I-IV are corollaries 
represent an extension and generalization of the method of [2]. The 
proof of VI proceeds by constructing a suitable Rosser-like state­
ment. Results V I I - I X are obtained from reducibility considerations. 
A detailed account of the proofs of these theorems together with 
additional consequences is planned for a later publication. 

The referee has called our attention to two papers which seem to 
be related to some of the above material, especially to Theorem VIII 
[Uspenskij, Theorem of Gödel and theory of algorithms, see review, J. 
Symbolic Logic 19, 218, and Ehrenfeucht, Bull. Polon. Acad. Sci. 
9, 17]. Certain aspects of these concepts remain to be investigated. 
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1. Introduction. This note is to report the main results in the paper, 
Attainability of systems of identities on semigroups, which will be pub­
lished elsewhere with detailed proof. 

Let ƒ and g be words, i.e., finite sequences of letters. By an identity 
we mean an equality ƒ=g of two words ƒ and g. Let 3 be a system of 
identities T\, 

3 = {r x ; X G A} where Tx is l% = gx," 

for example, {xyz = xzy} x = x2}, {xy — yxf x = x2} and so on. 
Let 5 be a semigroup. For a fixed S and a fixed 3, consider the set 

6 of all congruences p on 5 such that S/p satisfies 3, in other words, 3 
identically holds if all letters are replaced by elements of S/p. There 
is the smallest element p0 in 6 in the sense that poQo for all p £ 6 
[ l ] , [4], [7], [8], [9], [ l l ] . Then p0 is called the smallest 3-congru-
ence, and the partition of 5 due to p0 is called the greatest 3-decom-
position. Of course, such a decomposition of S is unique. If the 
cardinal number |S/po| of S/po is greater than 1, then S is called 
3-decomposable ; if |.S/po| = 1 , then 5 is 3-indecomposable. In parti­
cular, if 3 is a semilattice, that is, 3 = {x = x2, xy = yx}, then p0 is 
called the smallest semilattice-congruence or, simply, s-congruence. 
The author proved in his papers [8], [lO] the following theorem, and 
also Petrich recently proved the equivalent statement [6]. 


