TRANSLATION-INVARIANT CONES OF FUNCTIONS
ON SEMI-SIMPLE LIE GROUPS

HARRY FURSTENBERG!

Introduction. Originally, the phrase harmonic analysis had a
function-theoretic meaning, referring to the decomposition of a func-
tion into exponentials. In the current interpretation, particularly in
connection with noncommutative groups, the term refers not to
functions but to representations, and harmonic analysis is regarded
as part of the theory of group representations. This shift in inter-
pretation was motivated by the L2-theory for compact groups. The
decomposition of the L2-space of a noncommutative compact group
analogous to the Fourier decomposition for the circle involves multi-
dimensional subspaces, and, as a result, there is no longer a canonical
choice of a basis for the L2-space analogous to the set {e} for the
circle. The subspaces, on the other hand, are canonically determined,
and correspond to the various irreducible representations of the
group. It therefore became natural to regard irreducible representa-
tions as the basic building blocks of the theory in the place of the
exponential functions.

Our purpose here is to call attention to some examples in the theory
of semi-simple noncompact Lie groups where the classical setup pre-
vails. That is, we shall find a class of functions on these groups which
appear to play a role similar to that played by the exponentials for
the circle or the real line. In terms of these functions, a form of
spectral synthesis will be valid. Namely, for certain translation-
invariant classes of functions on the group, we shall find that each
function of such a class admits a unique representation as a general-
ized linear combination of the “exponentials” in that class. Admit-
tedly, this result corresponds to a relatively easy case of spectral
synthesis for the line. However, it is hoped that by pursuing this
analogy further, other fruitful applications may be found.

The prototype of the theorem we shall prove is a theorem of
Choquet and Deny [3] for R* (or any locally compact commutative
group). Let p be a positive bounded Borel measure on R” that does
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not have its support in a proper subgroup of R*. Form the cone V
of (unbounded) positive measures » on R* satisfying u * »=M», where
A>0 is fixed. A general result of Choquet and others to which we
shall refer more explicitly later ensures that V is spanned by its ex-
tremal rays. Moreover, choosing appropriately a single element from
each extremal ray, there will be a unique integral representation of
each member of V in terms of these extremals. The question arises
as to the nature of the extremal measures of V. The answer given by
Choquet and Deny is that the extremal measures have the form
f(x)dx where f(x) is proportional to an exponential: f(x) =ce*'=. In
other words, the measures of V all correspond to functions (in fact,
convex functions), and these functions are linear combinations of the
exponentials in V: FE V& F(x) = fe*'* dw(u) where w is a measure
concentrated in the set of % for which [e*'= du(x) =\.

It is worthwhile sketching a proof of the fact that the extremals of
V correspond to exponentials. The cone V is invariant under transla-
tion. Now the equation » =A"'u * » implies that » is a linear combina-
tion of its translates. This means that v cannot be an extremal of V
unless all its translates by points in the support of u are proportional
to ». If the support of u generates R" as a group, this implies that all
translates of » are proportional to ». One sees easily that » must then
be given by an exponential.

For a noncommutative group the convolution u *» may still be
defined and we can form the cone V of solutions to u * »=Av as be-
fore. This time, however, V is invariant under translation on the
right: v—v * g (this will presently be defined more precisely) and the
equation =N *» implies that v is a linear combination of left
translates. The above argument, therefore, breaks down, and one can
inquire what class of functions can occur as the extremals of V in
the general case. For a compact group G this question is easily
answered, because V will be empty unless A=u(G) and v must be
proportional to the Haar measure of G. But for noncompact groups
the question is more interesting and for the most part unsolved. We
shall solve this problem only for semi-simple Lie groups, and even
here only under additional hypotheses regarding u.

1. Preliminaries. If G is a topological group, by a G-space is meant
a space X and a continuous map (g, x)—gx of GXX—X satisfying
(g1g2)x = g1(g2x) and ex=x for e the identity of G. X is a homogeneous
G-space if G is transitive on X; that is for x, yE X, there exists gEG
with gx=v. X may then be identified with the coset space G/H,
where, for some xo& X, H is the subgroup that leaves x, fixed.
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If X is a G-space, u a Borel measure on G and » a Borel measure
on X, then the convolution u * » may be defined by

Jrorauestr = [ [ 169 autwase,

providing this integral is finite for continuous functions f of compact
support. In particular, the convolution of two bounded measures on
G is defined. We shall interchangeably denote the unit mass concen-
trated at a point x of a space X by 8, or by « itself. The convolution
6, * u for g& G and p a measure on a G-space (or on G itself) will some-
times be denoted gu; similarly ux is the same as u * §, where u is a
measure on G and x belongs to the G-space X. Notice that §, * §,=0;.,
so that our notation for convolution is consistent with the notation
for multiplication. It is frequently useful to regard convolution as a
linear extension of multiplication so that

wer= [ i - fx wd = [ fx g5 du()dn(a).

The space of unbounded regular measures on a locally compact
space may be identified with the dual of the space of continuous func-
tions with compact support on the space. When we speak of the weak
topology on measures, we have in mind the weak* topology of this
dual space. In addition, it will often be convenient to denote an
integral [f(x) du(x) simply as u(f).

On a locally compact group G a locally integrable function f(g)
determines a measure w on G by dw(g) =f(g)dg, dg denoting the left
invariant Haar measure on G. We shall often find it convenient to
identify the function f with the measure w. Thus the convolution of
two functions fi # f, or of a function with a measure, f * u or u *f,
is defined as the function corresponding to the measure which is the
convolution of the two measures involved.

On a group G we use the notation R, to denote the operator R,f(g)
=f(gy). It might be noticed that, as a measure, R,f corresponds to
the convolution f * §,-1. In our discussion we shall be concerned pri-
marily with translates on the right: f—R,f. As a result we shall al-
ways understand, by the translate of a function f, a right translate
R, f.

If X and Y are two G-spaces and j is a map of X into Y, we shall
say that j is equivariant if j(gx) =gj(x), for all xE X, gEG.

By a semi-simple group G we shall mean one which is noncompact
and has a finite center. Such a group admits an Jwasawe decomposi-
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tion G=K-A-N. Here K is any maximal compact subgroup of G,
A is a vector group and N is nilpotent, 4 - N is a solvable group whose
commutator subgroup is N. The decomposition is not direct but each
gEG admits a unique representation g=kan. The letter K will al-
ways refer to a fixed but arbitrary maximal compact subgroup of G.
mg denotes the normalized Haar measure on K. In general, if uis a
positive measure on a space X and u(X) =1, we refer to u as a proba-
bility measure.

2. Multipliers and multiplier functions. To generalize the notion
of an exponential function to an arbitrary group we may proceed
as follows. The exponentials are characterized by the property that
they have unit value at the identity and any translate is proportional
to the function itself. On a semi-simple group only the constant func-
tion has this property. (Such a function defines a homomorphism
from the group to the complex numbers and the homomorphic image
of a semi-simple group is semi-simple.) So we modify this condition
by supposing instead that we have a family of functions s(-, £),
where ¢ ranges over an index set X, with the property that s(e, £) =1
and that a (right) translate of each of the s(-, &) is proportional to
some other of the s(-, £). We may take X to be the family of func-
tions occurring here with the identification of proportional functions.
M is then a G-space, and we may write R,s(-, &) ~s(-, v£). More
precisely, we have

R,s(g, & = s(gv, &) = I(v)s(g, 7).

Setting g=e, we have s(v, &) =h(y) or
(2.1 5(gv, &) = s(g ¥H)s(r, H).

A function satisfying (2.1) is usually referred to as a multiplier.
As a function from G to the module of functions on M it is referred to
as a crossed homomorphism or a 1-cocycle. Our usage will be more
restrictive and we take the following as our definition.

DEeFINITION 2.1. Let X be a G-space. A continuous function s from
GXX to the positive reals is called a multiplier if it satisfies (2.1).
The group of all such functions is denoted M (X) (where the group G
is assumed fixed). If s€EM(X) and ¢EX then the function s(-, £)
is called a multiplier function. The set of all multiplier functions cor-
responding to multipliers in M (X) is denoted E(X).

If X consists of a single point, then (2.1) defines a positive char-
acter (homomorphism into (0, ©)) on G. Thus the positive exponen-
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tials are the multiplier functions on R* corresponding to a trivial X.
As we have remarked, for G semi-simple, if X is trivial, then E(X)
consists of the function 1. On the other hand, if X is taken too large,
E(X) is again uninteresting because it contains all positive continu-
ous functions f with f(e) =1. For example, if we take X =G, and if f
satisfies f(e) =1, define s& M(G) by s(g1, g2) =f(gi1g2)/f(gz). It is easily
seen that s satisfies (2.1) and f(g) =s(g, €). What we shall find is that
in the case of a semi-simple G, there is a choice of X for which the
functions of E(X) play the role of the exponentials. In particular,
these functions will turn out to be the extremals in our version of the
Choquet-Deny theorem.

If p(¢) is a positive continuous functions on the G-space X, we
may form a multiplier in M(X) by setting

2.2) s(g, &) = p(g8)/p(®).

We call these multipliers ¢rivial. (In the terminology of cohomology
theory, these would be coboundaries.) We shall call two multipliers
equivalent if their quotient is trivial. The (cohomology) group of
equivalence classes will be denoted H(X).
Similar considerations arise in the representation theory of G. If

X is a G-space we may define a representation of G on some linear
space of functions on X by setting U,f(§) =s(g1, £)f(g~£). The con-
dition that U, be a representation is just the multiplier equation
(2.1) for s. Moreover, if U, and V, arise from equivalent multipliers,
then U, and V, are equivalent representations. It will not be surpris-
ing that the space X that we will study has also been studied in con-
nection with the irreducible representations for semi-simple Lie
groups [1].

Let G be semi-simple and K a maximal compact subgroup, and let
X be a G-space.

DEFINITION 2.2. ¢ is a K-multiplier if o€ M (X) and o(k, £) =1 for
all k€K, t€X. The set of K-multipliers forms a group Mx(X), and
the corresponding set of multiplier functions is denoted Eg(X).

LEMMA 2.1. Let X be a homogeneous G-space and suppose that the
subgroup K is already transitive on X. Then the natural map of Mg(X)
into H(X) is an isomorphism onto.

Proor. To show that this map is 1-1 suppose 6 & Mx(X) and is
trivial: a(gf), =p(g€)/p(£). Then p(kE) = p(£) and since K is transitive,
p is constant so that o=1. To show the map is onto we associate to
every multiplier an equivalent K-multiplier. For s&€ M (X), set
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d
fK s(kg, ©) db fK (&, gb) dk

2.3 ol b = - (g, ),
[swoa  [swoan
K K

from which we see that o~s and o(k, £) =1.

From this we can see that, in many cases, although the group M(X)
is infinite-dimensional, the group H(X) is finite-dimensional. For if
we let X =G/L, where L is a subgroup of G, then K is transitive on X
ifand only if KL=G. If ¢& Mg and £,&EG/L corresponds to the coset
L, then a(g, £) =a(g, k&) =0a(gk, &) for some EE K. So o is determined
by the function a(g, &). Since g=Fk'l for some k' €K, IEL, ¢ is deter-
mined by the restriction of o(-, &) to L. But this is a positive char-
acter by (2.1), since l£,=§,. In particular, if L has finitely many con-
nected components then its (positive) character group is a subgroup
of a vector group. It follows that Mx(X) and, by Lemma 2.1, also
H(X), is isomorphic to a subgroup of a vector group.

In certain cases we can assert that H(X) is trivial.

LEMMA 2.2. If L is compact then H(G/L) =1.

ProoOF. Let s&€ M(G/L) and let £,& G/ L correspond to the coset L.
Then s(l, &) is a positive character on L. But, since L is compact,
s, &) =1. It follows that s(gl, &) =s(g, l&o)s(, &) =s(g, &), so that
s(g, £0) = p(gko) for some positive continuous function p on G/L. Hence
s(g, g'80) =s(gg’s £0)/5(g’, &) =p(gg'60)/p(g'%0) or s(g, &) =p(gE)/p(5).

As a final remark we point out that if j is an equivariant map of one
G-space X into another G-space Y, then there is induced a map
M(Y)—>M(X). Namely we assign to each s& M(Y) the multiplier s*
defined by s*(g, x) =s(g, j(x)). s* satisfies (2.1) if s does. If K is
transitive on X, then it is possible to show that the map of M(Y)
— M (X) induces an isomorphism of H(Y) into H(X).

3. Examples. In this section we shall recall some familiar integral
representation formulae which we shall see express a function as a
linear combination of multiplier functions. In each case the function
being represented satisfies a convolution equation or a family of such
equations, and the formula will turn out to be an instance of the
generalized Choquet-Deny representation.

Let G be the connected group of rigid motions of the plane R2 G is
the semidirect product K-R? where K is the subgroup of notations
and R? the subgroup of pure translations. R? is a normal subgroup of
G and G/R? may be identified with K. We shall compute Mx(G/R?).
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(Note that by Lemma 2.2, H(G/K) is trivial, so that all multipliers
of M(G/K) are trivial.) Identifying R? with the complex plane, we
may denote an element g&G by the pair (e®, w) if g(z) =e®z+w. The
action of G on K=G/R? is given by (e®, w){=e%{ where l;‘ | =1. We
then find that if ¢ & M&(G/R?),

o(e®, w5 §) = o1, ey 1) = MO,

where A denotes a homomorphism of C—R. This means A(z) = Rer
for some complex 7. The general form of a multiplier in Mx(G/R?)
is therefore

3.1) ao(e®, w; §) = eRe % o,

Consider now the zero-order Bessel function of an imaginary argu-
ment: f(r) = J(ir). The function on R? given by F(2) =f(|z|) is an
eigenfunction of the Laplacian A= D2+ D? on the plane. This implies
that it is an eigenfunction of the mean-value operators:

2r
T,F(z) = -—1— F(z + pe*) db.

2w J
We now lift the function F(z) to the group G by setting ®(e®, w)
= F(w). If we write the equations T,F=\,F in terms of ® we find
that ® satisfies a family of convolution equations on the group. Ac-
cording to the theorem to be proven it follows from this that ® can
be expressed as an integral over a set of multiplier functions in
E(G/R?). Moreover, since ®(kg) =®(g) for k€K, these multiplier
functions will be in Ex(G/R?), and so are given by (3.1). This is in-
deed the case, for by the Bessel formula

2r

1
10) = ronds= [ O am),

mJo

where dm({) refers to normalized Lebesgue measure on the unit cir-
cle. It follows that

F6) = [0 dn),
2, w) = [ am) = [ o Qo gy

= f a1(e®, w; ¢) dm(§).
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Bessel’s formula is a special case of a formula for spherical functions
on any symmetric space of noncompact type. (See [8, Chapter X]
for details.) Let us consider the case of a space of constant negative
curvature. The space may then be taken as G/K where G is semi-
simple. A spherical function F(x) on G/K is defined by the conditions:
F(kx) = F(x) for all k€K, F(x,) =1 where x, corresponds to the coset
K, and F is an eigenfunction of all differential operators on G/K
which commute with the action of G on G/K. If F(x) is lifted to G
we obtain a function ¢(g) = F(gK) which, as may be shown, is char-
acterized by the equation:

3.2) j; o(g1kgs) dk = ¢(g)e(g2), 81, 82 € G.

We notice that ¢ satisfies a family of convolution equations. In
fact, (3.2) may be rewritten (see §1) as

3.3) my * gt * ¢ = $(g1)¢.

The integral representation formula for these functions is due to
Harish-Chandra [8, Chapter X, Theorem 6.16]. We define a function
H from G to A, where A is the vector part of the Iwasawa decom-
position of G, by H(kan)=a. Then, for every spherical function ¢
on G, there is a homomorphism A: 4—C with

3.4 o(g) = f AHE @R Jp.
K

When ¢ is real and positive, A is real-valued. We shall show that in
this case, the integrand of (3.4) represents a multiplier in Mx(G/AN),
where KA N is the Iwasawa decomposition of G. Namely, seto(g, kAN)
=AM HWR) Since H(E') is the identity of 4 if ¥’ €K, it follows that
o(k', kKAN)=1. We next check the multiplier equation. Suppose
£=FkAN for k€K, and g, g.€G with

gzk = kzdgnz, g1kz = kiain.

Then gigok = giksasns = kiaimiaome = kiaia:min, since N is normal in 4 N.
Then

o(gige, £) = eAE@ak) = gAla+A(e)

(g1, §28) = o(gy, ke AN) = eAHh)) = o),
o'(gz’ S) = o'(gz’ kAN) = CA(H(W")) == eA(aR)’

so that o(gigs, £) =0 (g1, 2:£)o(gs, £). (3.4) may therefore be rewritten
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@5 el = fx o(g, EAN) dk = fwdg, 9 dm(®).

Thus the Harish-Chandra formula in the case of positive spherical
functions is a special case of the generalized Choquet-Deny repre-
sentation. It should be pointed out that our methods fail in the case
of complex-valued spherical functions although the formula (3.4) is
still valid.

Another example of a spectral decomposition for functions on a
semi-simple group is given by the Poisson formula for harmonic
functions in the unit disc. Let G denote the connected group of con-
formal maps of the unit disc D= {z: |2| <1} onto itself. A function
h(z) on the disc determines a function f(g) =k(g~'(0)) on G. Let K
again denote the group of rotations about the origin. The mean-value
property for harmonic functions says that k(0) = [gh(kz) dk for any
z&ED. If k is harmonic, so is the function obtained by composing &
with the transformation g}, g&G. This gives

(3.6) h(gY(0)) = fh(g‘lkz) dk.
K
If we write z=+"1(0), (3.6) becomes

@3.7) 1(g) = fx foke) db, g7 €G.

Thus the functions f(g) which correspond to harmonic functions on D
satisfy a family of convolution equations:

(3.8) mgxylxf=f

Assume that 2=0. The Poisson formula gives

1o = [ P, 6) dn),

0

where P denotes the Poisson kernel, and » is a positive measure. Now
one may verify that if z=g=(0) then

P(z, 0) = |g'(e”)]
or

(3.9) 1) = f | g | dno).
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We recognize by the formula for differentiating a composite function
that the integrand in (3.9) is a multiplier in Mg(dD) where 9D is
the unit circle.

The Poisson formula for harmonic functions also generalizes to
arbitrary noncompact symmetric spaces. Moreover, a similar repre-
sentation is valid for any positive eigenfunction of the Laplace-Bel-
trami operator on a symmetric space. This was shown by Dynkin [5]
for the symmetric space SL(z, C)/SU(%). Once again it may be shown
that the extremal solutions occurring in Dynkin’s representation are
multiplier functions for a certain compact G-space which we will call
B(G) and regarding which we shall presently be more specific.

Another generalization of the Poisson formula for harmonic func-
tions was given in [6]. For our present purposes it will be convenient
to deviate somewhat from the notation used in [6]. Let u be a proba-
bility measure on G which is absolutely continuous and whose sup-
port contains a neighborhood of the identity of G. Consider the
bounded solutions to

(3.10) 1@ = fe e’ du(e).

This is a generalization of (3.7) which was satisfied by ordinary har-
monic functions. It is shown that, given u, there is determined a
probability measure v on the G-space B(G) referred to in the preced-
ing paragraph, with the property that every bounded solution of
(3.10) is given by

(3.11) 1@ =] ) e,

B(@®
where f is a bounded measurable function on B(G). The measure »
satisfies u * v=v and from this one can infer that the transforms gv
are absolutely continuous with respect to », and that (dgv/dv)(x) is
positive and continuous on G X B(G). (3.11) may therefore be written

dg
(3.12) 0= [ (®)/(@) dv(a).
B(®) dl»'
We claim that s(g, x) = (dg~w/dv)(x) is a multiplier in M(B(G)). By
the definition of the Radon-Nikodym derivative it is easily seen that

dgn, dvy

(%) = —— (g2).

3.13
( ) dg—]'l’g dllg

So
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dv % = dgitv (=) dv @

dgiv dgsv
—— (82) —— (4),

dgalgry () = dgilgity dgity

]

which is the multiplier equation for s. Thus the measure g on G
determines a multiplier s&€ M (B(G)) and the bounded solutions of
(3.10) are integrals over multiplier functions corresponding to s:

1@ = f  5le ) o)

We note that this is the first example in which a multiplier is used
which is not a K-multiplier. Naturally, a function cannot be repre-
sented in terms of K-multiplier functions unless it satisfies f(kg)
=f(g) for kEK.

It should be mentioned that in case the support of u does not con-
tain a neighborhood of the identity a similar representation is valid,
but the relevant space may not be B(G) but rather one of finitely
many covering spaces of B(G).

The space B(G) which occurs in these formulas may be defined as
follows. If G=KAN is an Iwasawa decomposition of G we let T de-
note the normalizer of AN, that is the set of all g&G with g4 Ng—!
CAN. T is also obtained by adjoining to A N the centralizer K, of 4
in K: T=KAN. B(G) is then defined as G/T. T is not uniquely de-
termined, but it is unique up to conjugacy. As a result, the various
versions of G/T are all isomorphic as G-spaces. An alternative defini-
tion of B(G) occurs in [6]. We define a boundary of a Lie group G
to be a compact G-space with the property that for any probability
measure 7 on the space, some sequence g,m, g.&G, converges to a
point measure. All boundaries of G are equivariant images of one of
them, and this one is B(G). The equivalence of the two definitions
was proven in [10].

The space B(G) is an equivariant image of the G-space G/4 N that
occurs in (3.5). It may be shown that, in fact, the multiplier ¢ in
formula (3.5) which belongs to Mx(G/AN) actually is the image of a
multiplier in Mx(B(G)) (see end of §2) so that the integral in (3.5)
may also be taken over B(G). Thus in each of the cases studied, the
integral representation involves multipliers in M(B(G)).

4. Tychonoff groups. The significance of the subgroup T may be
attributed to the fact that it possesses a certain “fixed-point” prop-
erty which we will elucidate here. We consider a subcone V of a linear
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topological space S. We say that V has a compact base if there exists
a continuous linear functional L on S such that L(x) >0 for x&V
except for x=0, and such that V= {xE V:L(x)= 1} is compact. If
7 is a continuous linear transformation of S taking V into itself then
7 has a fixed (invariant) ray in V. For, by the Schauder-Tychonoff
fixed-point theorem [4], the transformation

™
L(rx)

X —

which is continuous and takes V;— V; must have a fixed point in V;.
The ray through this fixed point is clearly left fixed by 7. This result
may be extended to a one-parameter group of transformations 7(¢)
of S which take V into itself, and there will exist a ray in V invariant
under the entire group.

DeriNiTION 4.1. A Lie group G is a Tychonoff group if, whenever G
acts continuously by linear transformations on a locally convex,
linear, topological space .S, taking a cone V with compact base into
itself, then G has a fixed ray in V.

A Tychonoff group also has the following fixed-point property: If
it acts by affine transformations on a compact convex set, it has a
fixed point in the set. (An affine transformation is one that preserves
the convex structure: 7(ax+ (1 —a)y) =arx+ (1 —a)7ry, 0=a=1.) The
converse, however, is not true; a group may have the latter fixed-
point property without being a Tychonoff group. For example, every
solvable group has the fixed-point property relative to compact convex
sets. (See [6].) On the other hand, the group of matrices

x 0 0 u
{( ),( >:x,y,u,v>0}
0 v v O

is solvable, maps the first quadrant of R? into itself, but has no fixed
ray. An example of a connected solvable group which is not a Tych-
onoff group is the connected group of rigid motions of the plane. It
will develop that if this group were a Tychonoff group, there would
be no nonconstant positive eigenfunctions of the Laplacian in the
plane.

The following lemmas will be useful in establishing that certain
groups are Tychonoff groups.

LEMMA 4.1. Let A be a linear transformation on R* with strictly posi-
tive eigenvalues. If for some vector x, the set of vectors { Anx: — o <n < 0 }
is bounded, then Ax=x.
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Proor. Since A satisfies its characteristic equation, it follows that
all the vectors A"x are contained in the subspace H spanned by
{x, Ax, - - -, A1x}. Clearly each vector yEH has the property
that the set {A"y} is bounded. So the restriction of 4 to H is an oper-
ator with all its powers, positive and negative, bounded. Therefore
all its eigenvalues are on the unit circle. But they must be positive
and so the restriction of 4 to H has only the eigenvalue 1. We may
therefore express this restriction as I+ N, where I is the identity on
H and N is nilpotent on H. Let 7 be the least integer with N¢=0. If
122, form (I+N)*Ni—2=N+24»nN+1, This must be bounded as
n— o which implies N*!'=0 and this is a contradiction. It follows
that N=0, or the restriction of 4 to H is the identity. Hence Ax=x.

LeMMA 4.2. Let G, G, be connected Lie groups with Gy a normal sub-
group of G and let &, ®, denote their respective Lie algebras. Suppose

(@) Giis a Tychonoff group,

(b) G/G, is 1-dimensional,

(c) the adjoint representation of ® restricted to &, has matrices with
only real eigenvalues. Then G is a Tychonoff group.

Proor. We suppose that G operates on a linear space .S, that Visa
cone in S with compact base, and that L is a continuous linear func-
tional on S, positive on V, and such that {x: L(x) = 1} intersects V
in a compact set. Since G; is a Tychonoff group, G; leaves fixed at
least one ray of V. If x is a vector on such a ray there is determined
a positive character A on G; defined by gix =\(g1)x. Also, given a char-
acter N, there will exist a cone (possibly empty) VaCV of vectors
y& V for which g1y =\(g1)y. For gEG, g~1G,g CG:1 and we may define
the transform N of the character A by N (g1) =N(g~'g12). If xE T,

(4.1) M(g)gxr = Mg 'g1g)gx = gglgigx = gugx,

from which it follows that g V5 C Vy¢. Another consequence of (4.1) is
that if V), is nonempty, then A?(g;) is bounded as a function of g. For
we have

M(g1) L(gx) = L(ggx),
A(g1) = L(gigx)/L(gx),

and L(g1y)/L(y) <max L(g2), where z ranges over the compact set of
vectors in V for which L(z) =1.

If G/ denotes the commutator subgroup of Gi, then the group of
positive characters on G; may be identified with the group of positive
characters on G;/GY. Since the latter group is abelian, it is the image
under the exponential map of its Lie algebra ®,/[®;, ®.]. Thus the
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positive character group of G; may be identified with a subspace W
of the dual space (®:/[®;, G:])*. Now it may be checked that the
automorphism A—M\? of the positive character group of G, corresponds
to the operation X—Ad g(X) on ®;. Since ad @ restricted to ®&, has
all real eigenvalues, its image under the exponential map, namely
Ad G, has all its eigenvalues positive. This remains true when we pass
to the quotient space ®:/[®:, ®:] of ®,, and to its dual, and to the
subspace W of the dual.

We see then that the set of positive characters on G, forms a linear
space on which we have a representation of G given by A—\?, and the
eigenvalues of the transformations of this representation are all posi-
tive.

We know that for some No, V), is nonempty. This means by our
previous observation that Nj(gi) is bounded as a function of g&G.
But since the map A—X\? has positive eigenvalues, we see by Lemma
4.1 that N{=X\,. If we also recall that gV,,C V)3, we find that G takes
V>, into itself. We shall now show that some ray of V), is left fixed
by all of G.

Let V3, denote the set of vectors x& V), with L(x) =1. If for each
g2EG we define g* by

g*(x) = gx/L(gx)

then each g* takes V3, into itself. g—g* is a homomorphism of G into
a group of continuous transformations of Vy,. However, G} leaves
V3, pointwise fixed since each gix is proportional to x for x& V3. Thus
the action of G* on V5 is that of a one-parameter group. As a result
G* has a fixed point and this means that G has a fixed ray in V3, This
completes the proof of the lemma.

COROLLARY. A connected subgroup of the group of upper triangular
real v Xr matrices is a Tychonoff group.

PRrOOF. Such a group is solvable and we can find a chain G=G,DG,
DG - -+ DG,=e¢ with G;/G;1 1-dimensional and G normal in
G.. Let Q denote the group of upper triangular matrices with positive
entries on the diagonal. Since G is connected, GCQ. If Q is the Lie
algebra of Q, then Q consists of real triangular matrices. For ¢& Q,
the eigenvalues of ad g are differences of diagonal entries of ¢, and so
they are real. This will be true for any subalgebra of Q and so by
Lemma 4.2 we may proceed inductively to prove that G is a Tych-
onoff group.

CoROLLARY. If G is a semi-simple Lie group with an Twasawa de-
composition G=KAN, then AN is a Tychonoff group.



1965] TRANSLATION-INVARIANT CONES OF FUNCTIONS 285

ProoFr. According to [11, Exposé 11, p. 14], AN may be repre-
sented (faithfully) by upper triangular matrices.

THEOREM 4.1. If G is a semi-simple Lie group, the subgroup T de-
fined at the end of §3 is a Tychonaoff group.

Proor. We recall that T=K,AN where K, is the centralizer of 4
in K. Now since NN is the commutator subgroup of AN, every positive
character Aon A N isidentically 1 on N, and is determined by its values
on A. If k€K, then No(a) =\(kg'aks) =\(a) for aE 4, so that
Mo=\. Hence koV)C Vo= V», where Vy denotes the subset of x in
a cone V (with compact base) with gx=N(g)x for gEAN. Since AN
is a Tychonoff group, V, will be nonempty for some N\. Let x,&E V)
and form

X = koxo dko
Ky
Since kA C Vy, xEV,, and so AN leaves fixed the ray to which x
belongs. But clearly K, leaves x fixed so that the ray to which x be-
longs is left fixed by all of T.
By [6, Theorem 1.10] it follows that the subgroup T is maximal
with respect to the property of being a Tychonoff subgroup of G.

5. Spherical and semi-spherical functions. Before obtaining our
generalization of the Choquet-Deny theorem, we shall discuss a spe-
cial case connected with a class of functions which we shall call semi-
spherical. Throughout this section, G is a semi-simple group, K a
fixed maximal compact subgroup, 7" the Tychonoff subgroup defined
in §3 and B(G)=G/T. If yEQG, let A, denote the operator

5.1) A,f(g) = fx Flvkg) db = mx x v+ 1(g).

DEerINITION 5.1. A positive function f on G is semi-spherical if it
is an eigenfunction of each 4,, yEG.

The reason for our terminology is that a spherical function fulfills
this condition, as we see from equation (3.2). But whereas a spherical
function is bi-invariant under K: ¢(kigks) =¢(g), a semi-spherical
function need only satisfy f(kg) =f(g). (In fact, it is not difficult to
show that a semi-spherical function which is bi-invariant under K is
actually spherical.)

If f is semi-spherical, there is defined a function ¢(y) on G by
A, f=¢(v)f. We notice that ¢(v) is spherical:
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f f S(gikgak'gs) dRdl’ = f Ay, f(gok'gs) dR’
KY K K

= ¢(81) 4,,f(gs) = ¢(g1)9(g2)f(g3).
But the first integral of (5.2) is also

(5.2)

fKAa,ka,f(ga) dk =( fx ¢(g1kgy) dk) f(g3)

and so

fK¢(g1kgz) dk = ¢(g1)¢(g2),

which is the defining equation of a spherical function.
DEFINITION 5.2. We say a semi-spherical function f belongs to the
spherical function ¢ if

(53 J st = onster

the cone of semi-spherical functions belonging to ¢ will be denoted V.

V4 is never empty since ¢ < V. Notice also that V, is closed under
right translation, R,V4CV,, since the translates R, commute with
Ay

LeEMMA 5.1. If 6 € Mk (X) where X is a G-space such that K 1s transi-
tive on X, then the multiplier funciions o(-, x) are semi-spherical and
belong to the spherical function

(5.4) o(e) = fx o(g, ) dm().

Here m denotes the unique K-invariant probability measure on X. (m is
unique because K is transitive on X.)

fa('ykg, x) dk = (fa('yk, gx) dk) o(g, %)
= (fa('y, kgx) dk) o(g, x)

= ( f a(v,y) dmg * gx(y)) a(g, %).

Proor.
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Now the measure mg * gx is a K-invariant probability measure on X
and so mg * gx=m. Thus

Ay (-, %) = (1) (-, 2)

which proves simultaneously that ¢ is semi-spherical, that it belongs
to ¢, and that the function ¢ defined by (5.4) is a spherical function.

Notice that this yields the easier half of the Harish-Chandra repre-
sentation formula; namely, that the function defined by (3.4) is a
spherical function. For we have shown that the integral in (3.4) is of
the form (5.4) for the space X=G/AN.

We will show that the multiplier functions of Lemma 5.1 generate
the set of all semi-spherical functions. More precisely, we will show
that we may take X = B(G) and each Vj is spanned by the functions
in VsNEg(B(G)).

To begin with we examine how the multiplier functions of Ex(B(G))
are expressed as measures. Suppose x is a positive character on the
group T, and form the measure m¥ on T defined by

(5.5) 'y (@) = x()dt,

dt denoting left invariant Haar measure on 7. From (5.5) we obtain

(5.6) tm'y = x()mr

for t&7T. Inasmuch as right-invariant Haar measure on T is related
to the left-invariant Haar measure by multiplication by a positive
character, it follows that the measure m¥ is also related to right-
invariant Haar measure in a manner similar to (5.5). As a result we
may also write

(5.7) mrt = X' (ym’r,

where x’ is some other positive character in T.

Now form the measure mg * m¥=v. If g="Fkt, with k€K, tET, then
mg * g * my=x{t)mg *» my=x(t)v. Since KT =G, every g has such a
decomposition. Viewing an arbitrary measure on G as a linear com-
bination of point measures we find that for any bounded measure w,

(5.8) Mr*w*kmp = cv

for some constant ¢. From this it follows that v is absolutely continu-
ous, since w could be chosen absolutely continuous. Let f be the den-
sity of v: dv(g) =f(g)dg. Then

(5.9) flkg) = f(e),  f(g) = X' () (e)
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by (5.7). We may therefore define a multiplier by
a(g, vT) = f(gn)/f(v)

since if vy is replaced by «¢, both numerator and denominator are
multiplied by x'(¢~!). It is, moreover, clear that ¢ is a multiplier
and is in Mx(B(G)). Thus the measure mg * m¥, as a function, is
proportional to the multiplier function a(g, 7).

We shall need the following lemma whose proof we leave to the
Appendix.

LeEMMA 5.2. If 7 is a measure on G satisfying in =x ()7 for tET, and
X @ positive characier on T, then w=m3 * u for some positive measure ju
on G.

We now turn to the proof of the fact that the K-multiplier func-
tions for B(G) span the cones V. Suppose & V,;. We then have

(5.10) mg * vy~ L% b = ¢(y)h.

Form the cone V’ of all positive measures 7 with the property that
mg * y~! % 7 is proportional to & for all y&€G. Then &€V’ and also
V' is closed under translation from the left 7—gm. We claim that V'
is a cone with compact base in the weak topology on measures. If ¢
is some positive function with compact support on G with

[v@neae > o,

define a linear functional L by
L) = me s =) /[ W@ de

L is continuous and the intersection V{ of V' with the set of 7 such
that L(w) =1 consists of those w in V’ for which mg * 7=h. We claim
this set is compact. Since it is closed, it suffices to show that for each
compact set JCG, w(J) is bounded as 7 ranges over V{. But

meen(k) = [ [ Craee) dbints),
kva
with Cxs the indicator function of KJ. But Cks(kg) = Cx(k)Cs(g) so
k(g) dg =2 me(K)x(J) = =(J),

KJ

which gives the desired result. So V’ is a cone with compact base.
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Since G and therefore T operates on V'’ on the left, and since T is a
Tychonoff group (Theorem 4.1), there is a measure 7& V’ with
tr=x(t)w for all & T and some positive character x. By Lemma 5.2,
wT=m% * u for some measure u on G. Thus for some x, the measure
m¥ * uis in V’. This means that mg * y~! * m¥ * u is proportional to &
for every v and, in particular, mx * m¥ * u is proportional to .. But
mg * mp—a(-, %) for & Mg(B(G)) and for x, the point of B(G)
corresponding to the coset 7. mg * m¥ * u is a linear combination of
right translates of mg * m¥% and so it follows that

M) = [ otan, 0 dutn) = [ ola veor, 29 duta)
(5.11) ¢ ¢
- [ o m)
B(@)

for some positive measure u* on B(G). Now by Lemma 5.1, (-, x)
belongs to some spherical function ¢’ defined by

(@) = fB 78 o),

with m, as usual, denoting the unique K-invariant probability meas-
ure on B(G). But then the function £(g) satisfying (5.11) must belong
to the same ¢’. Our assumption, however, was that A& V,. We must,
therefore, have ¢’ =¢. We have thereby proven

THEOREM 5.1. Let ¢ be a positive spherical function and Vg the cone
of semi-spherical functions belonging to ¢. For each h&V, there is a
multiplier c € Mx(B(G)) with a(-, x) E V for each x& B(G) and such
that

(5.12) W) = fB ol ) 4

for some positive measure u* on B(G). The multiplier ¢ which occurs
in (5.12) must satisfy

(5.13) o() = f o6 dna),

where m 1s the unique K-invariant probability measure on B(G).

It should be noticed that we have incidentally proven that every
positive spherical function ¢ admits a representation (5.13), which is
essentially the Harish-Chandra formula.
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If the K-multiplier functions ¢(-, x) belong to V4 we shall simply
say that o belongs to ¢. Thus every spherical function has a K-multi-
plier belonging to it. In fact there is always a finite set of K-multi-
pliers belonging to each spherical function, the cardinality of this set
being, in general, equal to the order of the Weyl group of G. (See
[8, Chapter X].) It will develop that even though a number of dis-
tinct K-multipliers (over B(G)) belong to ¢, only one of them is
needed to span V.

6. The Choquet-Deny representation. The considerations of this
section are based on [3]. We are interested in determining when the
points of a convex cone can be expressed as resultants of measures
placed on the extremal points of the cone. We call a point x of a cone
V an extremal point if it lies on an extremal ray, namely, if y& V and
x—y& V imply y=Ax for A\=1. We shall be concerned with cones of
positive (unbounded) measures on a separable locally compact space
X. We regard the space of such measures as the dual to the space C°
of continuous functions of compact support on X and we endow it
with the corresponding weak topology. Suppose V is a closed cone of
positive measures on X and suppose u is a measure on V. We form the
resultant g by setting

(6.1 1) = [ =) dut,

where ¢ is a function of compact support, and the integral on the right
is assumed to exist. When it does, the resultant g is again a measure
in V. First of all, it is a positive measure because (6.1) defines a
positive linear functional on C°% Also &V for if g€ V there would
exist, by the Hahn-Banach theorem, a function ¢ € C® with g(¥) <0
and w(¥) 20 for all #& V. This is impossible by (6.1).

In general a cone V is a lattice if whenever x,x.& V, there exists
an infimum y=inf(x;, x;) with respect to the ordering of V. That
is, there exists y&EV with x;—y, x2—yEV, and if, for some other
VEV, x1—9y, x2—y'EV, then y—y' EV.

The result we shall need is the following:

THEOREM 6.1. Let V be a weakly closed cone of positive measures on a
separable, locally compact space X and let & denote the extremal rays of
V. Suppose there is a positive function of compact support Y with
7($) >0 for all TEV, w540, and let Vi= {w: w(y)=1}. Then for each
w&EV there exists a measure p on a Borel subset of &M\ V1 such that w
is the resultant g. If, moreover, V is a lattice, then the measure u is
unique.
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Clearly if we wish to have a unique representation in a certain set,
then this set can intersect each ray in at most one point. That is the
reason for restricting the representation to V..

The proof of Theorem 6.1 is based on the corresponding result for
compact, convex sets. If W is a compact, convex set it is possible to
define the resultant g of a probability measure u on W, and g will
be a point of W. We then have [2], [9]

THEOREM A. If W is metrizable then the set of extremals of W is a
Borel set and every point of W is the resultant of some measure on the
set of extremals of W.

A convex set W may be taken to be the base of a convex cone. For
example, if W is in the linear space S we may form the cone W in
R XS by setting W= {(t, tw): t>0, wEW}. We say that W is a sim-
plex if W is a lattice.

TureoreM B [2], [9]. If W is metrizable and is a simplex, then each
point of W 1s the resultant of a unique probability measure on the set of
extremals of W.

We apply these theorems to the cone V of Theorem 6.1 by showing
that each point of V lies in some compact convex subset WC V. Let
7& V. By the separability of X there will be some continuous func-
tion k everywhere positive in X and such that w(k) <. Suppose
m(h) =1. Let W be the set of 7’ &€V with #'(k) 1. This set is closed
in V and moreover, since k(x) >0 everywhere, so that on every com-
pact set k(x) is bounded from below, the measures #’ in W are
bounded in every compact subset of X. Thus W is a compact convex
metrizable set. Let us show that each extremal of W with the excep-
tion of the point 0 is an extremal of V. If 7’ is an extremal of W and
n' =m{ +m{ with w/ €V, then =/ (k) >0 unless 7/ =0. So

wi g

xs (h )
o T S

which expresses 7 as a convex combination of measures in W since
w{ (k) +74 (k) =1. It follows that w/ and w/ are proportional to ='.
Now by Theorem A, 7 is the resultant of a measure on the extremal
points of W:

T = f o du(a’) = f W,Z;/) = (¥) du(z’)

and this expresses  as the resultant of a measure on 8N\ V.

7 = w{(h)
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We observe that conversely, if w is given as the resultant of a
measure on &M\ Vy, then this measure corresponds to one on the ex-
tremals of W. Namely, if

Ny e

then [r'(k) du(r’)=1 and 7'(h) <o for almost all 7’ with respect
to u. We can then write

7["
T = «'(h) du(z’
J o w0 e
and 7' (h)du(n’) is a probability measure, and the measures 7' /7’ (k)
are extremals of W if the 7’ are extremals of V. As a result of this
observation it follows that to prove the uniqueness portion of Theo-
rem 6.1 it suffices, in view of Theorem B, to show that if V is a lattice
then W is a simplex. Equivalently we must show that W is a lattice.
This follows readily. If x;=(¢, tm), x2= (s, sm) are two points of W
where m;, mE W, then if { <s, we set

s
y = infg (%1, 22) = (t, t infy (71'1, r 1rz>) .

Notice that y& W inasmuch as infy(my, smy/t) is in W (being bounded
by m&EW). If we rewrite y as

(¢, infy(tms, sm2)),

it becomes clear that x;—7v, x,—yE W and if x;—9’, x,—y' €W then
y—yEW.

The uniqueness of the representation in Theorem 6.1 for the case
that V is a lattice may also be formulated as follows:

CoROLLARY. If V is a cone of measures as in Theorem 6.1 and Visa
lattice, then if v is a signed measure on 8MN\V; such that [z’ dv(z")E V,
then v=0.

ProOF. Write v=»;—»; with »;20 and suppose that [r’ dv(n’)
= [’ dvs(x’) with »;=0. Then % =747 and, by uniqueness,
=py+v;. Then v=»;20.

Theorem 6.1 is used to prove the following result which we refer
to as the Choquet-Deny representation.

THEOREM 6.2. Let G be a separable locally compact group and suppose
that {ja, a€ET'} is a commuting family of positive measures with com-
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pact supports on G (e * ps=pig * o, @, BET'). Let V denote the set of
positive measures m on G satisfying po * w=7 for all aEI'. Assume
moreover that there exists a continuous function of compact support
¥v=0 on G with w(Y) >0 for all €V, w#0. If & denotes the set of ex-
tremals of V and V1= {7r: Ty) =1 }, then, for each w& V there exists a
unique Borel measure v. on &MV, with ™= v,.

ProoF. Since the measures u. have compact support it follows that
V is closed. Thus the existence of a measure v, is guaranteed by the
first part of Theorem 6.1. To prove uniqueness we must show that
V is a lattice. Suppose then that 7, m.& V. Denote by 7’ the infimum
of m; and ; in the lattice of all positive measures. 7’ may be defined by

dn’ . dmy dmy
dm+w“*”mgm+m@wm+m@>

Let .S denote the convolution semigroup of measures on G generated
by the pe., aET. We shall consider the family S * 7’ of measures
wx7', uES. We have

o * 7’ S po*mi = W, =1, 2,

so that u, * 7 <7'. Hence u * 7' <7’ for any uES. By the commuta-
tivity of .S we also have

(6.2) W urr) Suxn

for u, W' ES.

Choose a dense subset { Wy * T } in S * #’. This may be done because
G is separable. Let

= lim uy* - -« *p, %7,
n—wo

This limit exists because the sequence of measures is decreasing by
(6.2). Clearly m=u * 7’ for any uE.S. Also g *7=7. But yo*wisa
limit of measures in S* 7’ and so m<p. * 7. Hence m=p, * 7 and
w& V. Since # =7’ we have m—7E V and my—7E V. Now suppose
m—7, m—#EV for some #E V. Then #=<7’ and p* #=u* 7’ for
all uE€S. But if #EV then u * =4, so #Su* 7’ for uES, and so
#=<m or 7—#C V. Therefore w=inf(m, m2) with respect to V. This
proves the theorem.

7. Application to semi-spherical functions. We apply the foregoing
to obtain more information regarding the representation of semi-
spherical functions in terms of multiplier functions. In particular we
shall see that for each spherical function ¢ (¢>0) there is a single
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K-multiplier o4& Mg(B(G)) such that V, is spanned by o4(-, x). G
is again a semi-simple Lie group.

LemMA 7.1 [7], [8]. The measures mxg * g * mg for gEG commute
with one another.

Proor. We use the fact that there is a map g—g’ of G into itself
with the following properties: (a) (g')’ =g, (b) (g1g2)’ =gJ g/, (c) K’ =k~
for FEK, d) if P={g:¢ = g} then KP = PK = G. (In case
G=SL(n, R), g’ denotes transposition.)

We extend the operation g—g’ to measures u—u’. We then have
mg=mg and (mg*p *mg) =mg*p*mg for p&P. Now every
gEG may be expressed as g=kp for k€K, pEP and mg * g % mx
=mxg * p * mg. It follows that (mxg * g * mg)' =mg * g * mg. From
this it follows that generally (mg *p* mg) =mg *u*mg. So
MK * g1 * Mg * Mg * g2 * mg is invariant under ( )/, but, on the other
hand, using (b) it must equal (mg * g * mg)’ * (mg * g1 * mg)’
=g * gy * Mg * Mg * g1 * mg. This proves the lemma.

Now the functions in V4 are the solutions =0 of

(7.1) me sy iaf = o).

The measure solutions of (7.1) are actually functions because f is
proportional to mg * u * f for any u, in particular, an absolutely con-
tinuous one. Since mg * f=f we may rewrite (7.1) as

(7.2) o(y)'mg xy L xme x f = f.

Since the measures mg * y~! * mg are mutually commutative and of
compact support, the cone ¥V, of solutions to (7.2) is one to which
Theorem 6.2 applies. Moreover, a function f& V4 must be everywhere
positive unless f=0, since by

(7.3) fx flvkg) dk = S)(E);

if f(g) =0, since f is continuous, f must vanish everywhere. Hence
for any function ¥ =0 of nonempty compact support, [f(g)¥(g) dg>0.
Choose ¥ so that Y(gk) =y¥(g) for k€K and Y (g)¢(g) dg=1. Then

J1ov@ e~ [ [ renuco dea

- fa (2)¥(2) dg f(e) = 1),

The set V3 of Theorem 6.2 is therefore the set of functions with unit
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value at the identity. We refer to 8NV, as the normalized extremals.
Theorem 6.2 then asserts that each semi-spherical function in Vy has
a unique representation in terms of normalized extremals of V.
Now by Theorem 5.1, every function in Vj is an integral over multi-
plier functions o(+, x) in Vy (equation (5.12)). It follows that an ex-
tremal of V, must already be proportional to a multiplier function.
Since the multiplier functions satisfy o(e, x) =1, we see that the
normalized extremals of V4 are multiplier functions.

We next show that only one K-multiplier o4& Mx(B(G)) can be
such that the functions o4(-, %) are extremals of V;. Suppose that
a1(-, %) and o2(-, x) are all extremals in V. (Note that if ¢1(+, xy) is
an extremal so is R,01(+, %1) =01(-, yx1)o1(y, %1) so that all o1(+, x) are
extremalsif one of themis.) Nowif o1( -, x) € Vs then [5(¢)01(g, x) dm(x)
=¢(g). The same holds for ;. But ¢ & V,; has a unique representation
in terms of its extremals (Theorem 6.2) and so the set of functions
a1(+, x) must be identical with the set a2(-, x). Now both these sets
of functions B; and B, form G-spaces with the operations h—Ryk/k(g).
Moreover it is easy to see that x—a;(-, x) then gives an equivariant
map of B(G) onto B,, =1, 2. But the spaces B; are the same, so if
71703, we obtain two distinct equivariant maps of B(G) onto B;= B,.

LemMma 7.2. If ji: B(G)—B, ji: B(G)—B are two equivariant maps
of B(G) onto the same space B, then j1=js.

Proor. It suffices to show that for some point x,EB(G), ji(x0)
=j,(x0). For any x&EB(G) form the measure 7r=%{6,-l(z)+6,~,(,)} on
B. Since B is a boundary (end of §3), there exists a sequence { 2.} CG
with g,m converging to a point measure. But extracting a subsequence
we will have g,,x—x, for some 2o& B(G) and 50 g, 7% { 8, sy + 8iscen) | -
If this is a point measure we must have j1(xo) =ja(x0). Hence j1=7j..

It follows by this lemma that the maps x—a;(-, x) must be the
same for =1, 2, and so g1=02. We have thereby proved

THEOREM 7.1. To each positive spherical function ¢ on G there is a
multiplier 0, Mx(B(G)) such that every positive solution to

J st = oste
s given by
(7.9) £@) = f oule, ) )

where v is a positive measure on B(G).
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For, the function f& V, has a representation in terms of normalized
extremals of V4. We have seen that these extremals must be multi-
plier functions and, moreover, only one multiplier belonging to ¢ can
give rise to extremals. We denote that multiplier by .

There is still one improvement that may be made on Theorem 7.1.
We know that a measure on the set of extremals of V, is uniquely
determined by its resultant, but we cannot as yet identify B(G) with
the set of normalized extremals. Namely the map x—wa4(:, x) may
not be 1-1. We shall see later that this map is 1-1, so that the measure
v in (7.4) is uniquely determined by the function f.

According to Lemma 5.1, every multiplier function in Eg(B(G)) is
semi-spherical and belongs to some V. We may then apply Theorem
7.1 to obtain an integral representation of any multiplier function
with respect to B(G) in terms of some ¢4. Even in the simplest cases
this leads to nontrivial relationships.

Let us illustrate this for the case of the group G of analytic auto-
morphisms of the unit disc. In the Iwasawa decomposition of this
group G, the vector group is 1-dimensional. It follows that Mx(B(G))
is 1-dimensional (o(g, ¥7T) is determined by the positive character
a(¢, T) which is determined by ¢(a, T)). For this group, B(G) is the
boundary of the unit disc, B(G) = {e“}. We have seen in §3 that
Ig' (e"a)l is a K-multiplier with respect to B(G) and so it follows that
all the K-multipliers in Mg(B(G)) are given by

(7.5) ag e = | gE)], —w <s< .

If we denote by m normalized Lebesgue measure on the unit circle,
then (7.5) can also be written as

(1.6) g = [£ ]

We recall from §3 that this expression always represents a multiplier.
The spherical functions on G and therefore given by

8.0 = [ o.g, 0 am(e).

Now, in general, if G is a semi-simple group and B(G) is its asso-
ciated G-space we can form a 1-parameter family of spherical func-
tions by taking

®.(g) = j;«,v) [di_mlm (x):l‘dm(x), —w <5< .

We then have
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(x) dm(x)

rdg'm —* dg7'm
o= [ [E20]
B(@) m dm

am

Cdg'm

(7.7 = j; “ _—dm (g“x)]_ dm(x)

_ fB . i jg”; (x)]-. dm(x)

—_ -dgm : —_ 1
_ fB = (x)] m(x) = bu(g).

In our case it can also be verified that ¢:(g) =¢.(g™?). (Every g&EG
can be written g=kihk; where k; and &, are rotations and

z—T

h(z) = ’ —1<r<t.

1 — 172

But =5k, so ¢s(g) =¢:(h) =¢s(h~Y) =¢,(g~1).) For this group it fol-
lows that ¢, and o1, belong to the same spherical function. As a re-
sult, for each s we must be able to express o,(-, ¢¥) in terms of
o1-s(+, e%¥), or vice versa. Now it can be seen that o1/.: grows more
rapidly than o1,5—: and, as a result, the latter must be expressed in
terms of the former. Granting that such an expression exists, it is not
difficult to determine what it must be. If we write o1_.(g, 1)
= [o,(g, €) dv(6), and use the multiplier property for s;_, and o,
and the uniqueness of the decomposition in terms of o,(:, x)—the
extremal of V,—we conclude that

dtv .
7— (8'0) = Ul—x(t, 1)0.‘(1—1’ e;O)
Vv

for t&G and t1 =1. This determines the measure ». If we write
1— 722

1—2rcos(@—¢)+r

ol e = ( ) = P60 - o,

the relationship in question is

2x
P(f, 0)1—‘ = 7af P(r,G _ ¢)‘(1 — COS ¢)s—1 dd’;
0
(7.8) e

Yo = I:j;h(l — cos ¢)*! d¢:|—‘.
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(7.8) is proved by these means to be true for s >1/2. Since both sides
of (7.8) are analytic for ®Rs>1/2, the same formula holds for these
complex values as well. Apparently a limiting form of (7.8) is still
valid for ®s=1/2. In this case the kernel (1 —cos ¢)!/2t+ is singular,
but with the proper interpretation it defines a unitary operator on
L2(0, 27). Equation (7.8) then shows that this operator is the inter-
twining operator relating the equivalent unitary representations ob-
tained from the complex multipliers ¢1/21:: and o172 (see §2).

8. The general convolution equation. We now come to our main
result which deals with solutions to the general convolution equation

(8.1 [ reo ) =vw, r>o0.

Unfortunately, we shall not be able to handle the case of an arbitrary
positive measure u. We shall have to assume, to begin with, that u is
absolutely continuous and we shall also make a special assumption re-
garding the support of u. Specifically, we shall take du(g) =y(g)dg
where ¥(g) is a bounded measurable function of compact support A,
and assume that A has the property that some power A” contains a
neighborhood of the identity. These hypotheses regarding ¢ will be
assumed in force throughout our discussion. Our equation now takes
the form

3.2 [ steower ag = e

and we denote by V() the cone of non-negative solutions to (8.2).
We shall show that Vi\(¢) is spanned by its extremals and that the
extremals are multiplier functions. Note that unlike equation (5.3),
the solutions to (8.2) need not satisfy f(kg) =f(g). As a result, the
multiplier functions that we deal with now are no longer K-multiplier
functions. As usual, VA({) is translation invariant, and so, for a
multiplier s€ M (B(G)), if s(-, ) E Vo) for some x,EB(G), then
s(+, x) E V) for all x€B(G).

LEMMA 8.1. In each equivalence (cohomology) class of H(B(G)) there
s at most one multiplier s with s(-, x) E Va(y).

ProoOF. Let us denote by ¢ the #n-fold convolution of  with it-
self. Notice that under our hypotheses, ¥ ™ will be continuous of
compact support containing a neighborhood of the identity for some
n=2. (8.2) implies that
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(3.9 [ rwowe@r g = 2.
If s(-, x) satisfies (8.2), then
[ st6 2w g = .
If o'rvs then 5'(g, ¥) = (6(&)/p(x))s(g, ), s0 that if (-, E VAW,
[ #en1sta, @) dg = Nepa).
Then

[ 2es(e, 9o ag

(8.4) p(x) =
s(g, x)¥™(g) dg

If T CB(G) denotes the set where p(x) attains its maximum, and
Y™ (g) >0, then gI' CT', according to (8.4). Since this set of g com-
prises a neighborhood of the identity, GI' CT' so that I'= B(G). Hence
p is constant and s’ =s. This proves the lemma.

If the function f on G corresponds to the measure m, then equation
(8.1) may be rewritten @ # w=Aw. Here { is the measure correspond-
ing to the functions ¢¥(g!). Because & is absolutely continuous, m
must also be, so the set of positive solutions to & * m=Ar is VA({).
We also note that the non-negative solutions to (8.2) are all con-
tinuous and everywhere positive. This follows from (8.3) since Y
is continuous, and if f(g) =0 then f(g’g) =0 for g’ in a neighborhood
of the identity of G.

We may now apply Theorem 6.2 to the cone V,(¥). For, to begin
with, this cone coincides with the cone of measures satisfying i *
=M. Secondly, [f(g)¥(g) dg=N(e)>0 for every fE V(). So if &
denotes the set of extremals of VA(¥) and VY (¥) denotes the set of
functions in V() with f(e) =1 we have

LEMMA 8.2. For every function f& V\({) there is a unique measure v
on V¥ (Y)M& with

(8.5) 1) = f 1 b,

A@)INE

The deeper part of our analysis concerns the identification of the
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extremal functions in VY () with multiplier functions. We shall first
prove

LeMMA 8.3. For each extremal f& VY (Y)NE, there is a G-space X on
which K 1is transitive, and a multiplier s M(X), such that f(g) =s(g, &)
for some EEX.

Proor. To begin with, let us notice that the space VY (¢)M\&is a
G-space. Forif f(g) isan extremal of VY (), sois the function f(gv) /f (7).
Thus G operates on VY (¢)/M\& by right translation (and normaliza-
tion). Let us form the subset X of extremals f(gv)/f(v), vyEG. UIf
L= {‘y: flgy) =c(v)f(g) }, where ¢(y) is some arbitrary constant, then
X =G/L. We can define a function s on GX X by

(8.6) s(g, vL) = f(gv)/f(v).

s is well defined since if v is replaced by vl, /&L, both numerator and
denominator in (8.6) are multiplied by ¢(!). Moreover, s is a multiplier
in M(X). To prove the lemma, it is merely necessary to show that K
is transitive on X. (This will, incidentally, imply that X is compact,
a fact which is not otherwise obvious.)

We shall use the following notation. If ; and 7, are two measures
we shall write m;>m. if, for some €>0, 1 = ems. We call a measure 7
radial if it satisfies ky * m * ky =1 for ki, ks EK.

If p is any continuous function on G with compact support, there
is an n with ¢ ™>p- ¢ is defined by ¥(g) =¢(g~1). Choose p radial and
positive in a neighborhood of the identity. Then

P e f = o,

and so p * f<f. If we now choose p>1 on the support of ¥, we will
also have ¢ * f<p * f. Hence

8.7 fF<p*xf<f.
Since p is radial, mg * p=p * mg=p. By Lemma 7.1,
(8-8) p*f*mK=p*mK*f*mK=mK*f*mK*p=mx*f*p,

If p’ is another radial function whose support contains a neighbor-
hood of the identity, and p’ =0, we will have p’ * p>=p. So

(8.9 prfxp = pxmg*fxp =mgxfxp' xp>mg*fxp,
or p»f*p'>p % f* mg. By (8.7),
(8.10) fxp > f*mz.

Returning to the functional notation we have
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f flgg"Mo'(g') dg’ > f f(gk) dk.
(€] K
Setting f(g) =s(g, &) (see (8.6)), we can write
[ ste g-easte, 000 g > [ ste, Beste, &) ab
[e] K

or

[ ste.g-000 @) ag > [ st #t) av
[e] K

which may be written

(8.11) fx s(g, £) den(® > fx s(g, &) dan(?).

Now the functions s(g, £) are extremals and V,(y) is a lattice. By the
corollary to Theorem 6.1, (8.11) implies that w;>w,. Now X is a
manifold as the quotient of a Lie group by a closed subgroup, and
the measure w;, as image under the natural map of G—G/L of an
absolutely continuous measure, is itself absolutely continuous on X.
(This means that the restriction to a coordinate neighborhood is ab-
solutely continuous with respect to Lebesgue measure induced on
that coordinate neighborhood.) On the other hand, we=mg * & is
concentrated on the submanifold K&, CX. A measure on a submani-
fold of X can be absolutely continuous on X only if the submanifold
is open. But K&, is closed and X is connected. It follows that K§y=X
which is what was needed to prove the lemma.

To prove that the space X occurring in Lemma 8.3 is B(G) or an
equivariant image of B(G), we use the next lemma. We shall continue
to use the notation m>~m; introduced in the proof of Lemma 8.3.

LEMMA 8.4. Let Y and Z be two homogeneous K-spaces and suppose
there is a map from Y to the space of probability measures on Z, y—0,,
such that Or,=k0, for kE K, and whenever ui, s are two positive meas-
ures on K such that u, * 0,>—ps * 0,, we have py * y>—ps * y. Then there
is a map j: Z—Y, equivariant with respect to K, and such that j(y)
coincides with the support of 0, for each y& Y.

Proor. We set Y=K/K,, Z=K/K;. If mx, denotes the Haar
measure on K;, then ¥ may be identified with the space of measures
{kmg,: REK} on K. Similarly, the space of measures on Z can be
identified with the space of measures {» * mg,: » a measure on K}.
Namely, if w is a measure on Z, set
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S(F) = j; ,x,[ ) dk'] dw(kK>),

so that & is a measure on K. Then &k =& for k€ K,, and so & =4 * mk,.
Since @—w under the natural map of K—Z, the correspondence
Gewis 1-1.

Let y0& Y correspond to the coset K; or to the measure mg,. If
6,, corresponds to » * mx,, then, since K; leaves v, fixed, it must leave
6,, fixed, so that 6,,=mg, * 0,,, and ,, corresponds to mg, * v * mg,.
The map y—4, is then given by

(8 12) kal g kal *p * MK,

The hypothesis of the lemma may then be rewritten: p, * mg, * v * mg,
S—pa * ME, * v * mg, implies py * mg >ue * mg,, We can make this
more precise. Suppose, in fact, that us * mg, *v * mg, = us * mg, *v * mg,.
Then for some C>0, uy * mg, = Cup * mg,. Take the largest possible C
for which this is true and suppose C<1. Then

(u1*mg — Cpg* mg,) *mg, ¥ v* mg, = (1 — C)ua * mg, * v * mg,.

Now ; * mg— Cus * mk, is a positive measure, so we can apply the
condition in the lemma again. We get, for some ¢>0,

(pl * Mg, — Cus * mxl) * MKk, = eug * MKy
or
m*mg, = (C +e)us * mg,.

This contradicts the choice of C. It follows that C=1. What we have
shown is that, for a signed measure u on K,

(8.13) prmg *v*mg, = 0 implies u*mg, = 0.

Suppose, more generally, that we have two positive measures w,
and w; on K with the property that u * w; =0 implies u * v, =0. We
claim that we must have w;=w; * w for some positive measure w on
K. The proof is based on the Hahn-Banach theorem. Namely, form
the cone of all w; * w, @ =0. This cone is weakly closed. If w, did not
belong to this cone, it could be separated from it by a continuous
linear functional. That is, there would exist a continuous function &
with w; * w(k) =0 for all w=0 on K, but w.(k) <0. Now the first in-
equality implies that % * w; =0 (%(g) =k(g~")). Hence % * 0, =0 which
in turn implies wz(k) = 0. So w, must belong to the cone in question, or
We =W * W.

By (8.13) we therefore have mg,=mg, * v * mg, * » for a positive
measure w on K. Let P be the support of » and Q the support of w.
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The support of a convolution of positive measures is the product of
thesupports, so PK,Q C K. Thisgives PK,P-'C PK,QQK,P'CK,.

To define the map j it is merely necessary to verify that every point
of Z belongs to the support of some 6, and that the supports of 6,
and 0,, do not overlap unless y; =7y,. As to the first question, we notice
that since some point belongs to the support of some 6,, and Z is
homogeneous, every point belongs to the support of some 6,. For the
second question we observe that the support of 0:x, is the image in
Z of kK1PK, by (8.12). So if

F'K:\PK3N k'K.PK; = &,

then Ek'—%"E€K,PK,P-'K{'CK; and k'K,=Fk"K,. This completes
the proof of the lemma.

We return to the extremal f in V) () and the space X which it
generates. We have f=s(-, &), s&€ M(X), and we have shown that K
is transitive on X. At this point we invoke the theory of semi-spheri-
cal functions. By Lemma 2.1, every multiplier in M(X) is equivalent
to a K-multiplier:

(g8
?®

where p(£) is continuous and positive in X. By Lemma 5.1, the func-
tions o(+, £) are semi-spherical and belong to the spherical function

(8'14) S(g, E) = o(g, E); cE MK(X)7

o(g) = fx o(g, &) dm(®),

where m is the unique K-invariant measure on X. By Theorem 7.1,
the semi-spherical functions belonging to ¢ are all generated by some
0, €Mk (B(G)):

o(g,8) = f L oole, ) )

for some measure 8’ on B(G). Let B’ be the equivariant image of B(G)
obtained by identifying x1,%.EB(G) if o4(g, %1)=04(g, %:). (One
verifies readily that this is an equivalence relationship.) ¢4 defines a
multiplier ¢J in Mg(B’) and we may write

(8.15) o8 = [ 7 o).

Because the o/ (-, ¥), yEB’, are all distinct, the points of B’ cor-
respond to the normalized extremals of V. In particular, the meas-
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ures 0; in (8.15) are uniquely determined. Since o (g, k) =0 (gk, £),we
conclude from (8.15) that k0;=0;;. We now show that the map
£—0; from X to the probability measures on B’ satisfies the condition
of Lemma 8.4. Suppose then that ui, us are positive measures on K
with u; * 0:>—pus * 0; for some £EX. Note that by (8.14), s>o>-s. As
functions of g we then have

[ sta, 1) duao > [ o(e, 50 st
K K
= o d 1 k) = (Tl ) d 1
Joter v au® = [ [ 2t durans)
= [ [ otte 1) dmwin) = [ od(a9) du o)
’ K Bl
af y dug * = ad y Aus
[ wtadnsoe = [ [ ot du@ran
= [ [ ottt ) duwrine) = [ o(st, 9 duat)
B' Y K K

- fK e, 1) dus(h) > [ (g, B9 dua(h).

Now the extreme ends of this series of inequalities are integrals over
s(g, 1), n€X, and these are extremals in VY ({). By the corollary to
Theorem 6.1, since V)(¥) is a lattice, we must have u; * £>puq * £.
The conditions of Lemma 8.4 are thereby verified and we can con-
clude that there is a map j: B’—X such that 6; has its support equal
to j~(%).

Finally we must show that j is equivariant as a map of G-spaces:
J(gy) =gj(y). By (8.15),

a(gv, &) = o(g, vHa (v, )

(8.16) )
o1, [ ot (6, doue).

On the other hand,

oler 9 = [ i ar ) o) = [ o (6190t () a0
(8.17) ¥ '

= [ ot @ n1ed 7719 101G,
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By the uniqueness of the Choquet-Deny representation in V; we
must have

o(v, §)dy(z) = o4 (v, v'5)dv0;(2).
This implies that
(8.18) Y0 < Oy

for any y&G. Suppose now that j(y) =£ Then y & support(d;) and
gy & support(gh:). By (8.18) this implies that gy € support(6,:) or
j(g€) =gy. This proves that j is an equivariant map of B’ onto X.
Now B’, in turn, is an equivariant image of B(G). But the map
B(G)—X induces an injection of M(X)—M(B(G)) and so the multi-
plier s€ M(X) corresponds to a multiplier s*& M(B(G)). We have
proved

THEOREM 8.1. The cone V\(¥) of non-negative solutions to
[ reoue) g = 1@

admits a Choquet-Deny representation in terms of its normalized ex-
tremals. Each normalized extremal has the form s(-, x), where
s€ M(B(G)) and x< B(G). Moreover, if n© H(B(G)), there is at most
one multiplier s,En such that s,(-, x) € VLA({{).

9. Basic multipliers. Theorem 8.1 tells us that the extremals of
V\(¥) are proportional to multiplier functions in E(B(G)). However,
not all the multiplier functions in Vi(¢) need be extremals. For
example, taking ¢ =1 on G, the multipliers (dg—'m/dm)(x) =a1(g, %)
and oy(g, x) =1 in Mx(B(G)) both belong to V,;. However,

_ dg'm
1—Lm (x) dm(z),

am

so that oy cannot be an extremal of V. In this section we shall intro-
duce a class of multipliers, the basic multipliers, such that the nor-
malized extremals of V\(¥) coincide exactly with the set of basic
multiplier functions in V,(). In the course of this discussion we shall
resolve another question. Namely we shall show that the space X of
the preceding section is not just an image of B(G) but coincides with
B(G). In addition we will find that the space B'=B(G) so that the
space B(G) coincides with the set of extremals in each V.

DEeFINITION 9.1. s€ M (B(G)) is basic if, for a signed measure w on
B(G),
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f s(g, %) dw(x) = 0 forallg implies w = 0.

We denote by M;(B(G)) the set of all basic multipliers, and by
Ey(B(G)) the set of all multiplier functions coming from basic multi-
pliers.

In particular, [s(g, x) dw(x) =0 implies w=0 for s basic, and so the
functions s(-, x), x&B(G), must all be distinct. It follows that a
multiplier on B(G) induced by a multiplier in an equivariant image
B’ of B(G) cannot be basic unless B’ = B(G).

LeMMA 9.1. s& M(B(G)) is basic if and only if
©-1) [ 56,2 dntad > [ st dena

implies wi>-ws for any two positive measures wy, ws on B(G).
The proof is similar to the proof of (8.13) in Lemma 8.4.

LEMMA 9.2. If s, and s; are equivalent multipliers then s, is basic if
and only if sq is basic.

Proor. For, if s; and s, are equivalent, s;>—sz2>=s1, so that (9.1) for
s1is equivalent to the same assertion for s..

Thus the condition of being basic depends only on the equivalence
class of s and we may introduce the set Hy(B(G)) of basic (cohomol-
ogy) classes.

LeEMMA 9.3. s is basic if and only if the cone of functions on B(G)
spanned by the functions s(g, -) is dense in the cone of all positive con-
tinuous functions on B(G).

That s is basic under the stated condition is immediate. The con-
verse is a consequence of the Hahn-Banach theorem.

According to Lemma 9.2, s is basic if and only if the K-multiplier
equivalent to s is basic. We will now show that the basic K-multipliers
are just the o, which we saw spanned the cones V.

THEOREM 9.1. 0 € M (B(G)) is basic if and only if ¢ =0, for some
spherical function ¢.

Proor. We shall first show that if ¢ is basic it coincides with some
ds. This is the easier of the two directions. Suppose then that ¢ is
basic. In any case o & V, for some spherical function ¢ by Lemma 5.1.
Then, as in the proof of Theorem 8.1,
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©.2) o6 = [ o) d.0).
BI
Now suppose that u; * 0:>—us * 0; where u1, us are measures on K. Then

LU(& ) dus * x(y)
= fKa(g’ kx) dui(k) = La’(gk’ x) dui(k)
- L L,"“’ (8k, 2) db.(3)dui(k) = fx fB 74 (g, ka) d.(2)dui(k)

= f ‘70’ (gr u) dui * 0:(“)’
Bl

for =1, 2. Since u; * 0,>—u2 * 0, it follows that

[ o663 dix 20> [ ota,5) dua % 203,

By Lemma 9.1, since ¢ is basic, this implies u; * x>y, * x. We see
that the map x—#0, from B(G) to B’ fulfills the conditions of Lemma
8.4. This means that there is an equivariant map (see the proof of
Theorem 8.1) j: B’—B(G) such that 0, has its support on j~!(x). But
B’ is itself an equivariant image of B(G)—j’: B(G)—B/, so that jj’ is
an equivariant map of B(G) onto itself. Now, by Lemma 7.2, the
identity is the only equivariant map of B(G) onto itself. So jj’ is
the identity. Since j’ is onto, j is an isomorphism. Hence B’ = B(G)
and j is an equivariant map of B(G) onto itself; hence the identity.
Since 0, has its support on j71(x), it follows that 8,=36, and o(g, %)
=04 (g, x) =a4(g, x). This proves that if ¢ is basic, then o =0,.

Now consider the K-multiplier o4 for some spherical ¢. We wish to
prove that o, is basic. We must first establish that g4 separates points
in B(G). To do this introduce the space B’ as before: B’ is obtained
from B(G) by identifying x:, x:EB(G) if o4(g, x1) =04(g, x2) for all
g&EG. Let j denote the ensuing natural map of B(G)—B’. We then
define o as before by a4 (g, j(x)) =a4(g, x).

For each £€ B/, let K; CK denote the subgroup of K that leaves
£ fixed. K; takes j71(£) into itself and is transitive on j~!(£) since K is
transitive on B(G). So there is a unique probability measure 6; on
7~4&) invariant under K; We see readily that k0;=0;; for k€ K. If



308 HARRY FURSTENBERG [March

yEG and y£=§£, then vy determines a differentiable homeomorphism
of j771(£) with itself and so v0; is absolutely continuous with respect to
f;. Since every g&G is a product ky with kEK, vE=E£ (since KE=B’),
it follows that gf:=~kv0; is absolutely continuous with respect to
kO; =0 =0xy:=0,:. Then g—10,; is absolutely continuous with respect
to 0; and the expression

(9.3) o(g, %) =

dg—laaf ’
a0, (®)ad (g, &)

is well defined for x in the support of 6, that is, for j(x) =£. We claim
that with this definition of £, ¢ (g, x) defines a multiplier in Mx(B(G)).
a(k, x) =1 since k10;:=0; and o (&, £) =1. What remains to be veri-
fied is the multiplier identity. Letting £ =j(x) we have, making use of
(3.13):
_ dgs g1 g1t
do;
dgl_loawzi
dgzog
dgi 05,0, d

Bos¢ ’ ’
X X 3 5
o (g2%) do: (g22)a4 (g1, g2b)ag (g2, &)

dgfleazé ’
X 3
a0, (%) (g2, &

o (g182, %) (®)od (8182 ©)

(g2%)0d (g1, g28)04 (g2, §)

o (g1, g2%)

= a(g1, g2%)c (g, %).

Here we have used the fact that j(g:x) = g.£ if j(x) =£.
We next verify that this multiplier ¢ also belongs to ¢. It suffices
to show that

©.4) Lmdywmm=¢@.

But

o\4, d = O',kodk
L@@@m@ L@x)

- f f o(g, k¥'x0) dRdE.
K<Y K’

Here x, is any point of B(G) and K’ is any subgroup of K. If we let
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£0=7j(x0) and set K’'=Ky, then k'x, has the distribution 6, for &’
uniformly distributed in K’. So

a(g, x) d = a(g, ky) dbg,(y)dk
fB RICELEC fK f 76 1) )

(9.5)
- fK fB RCPEXOM

Now

f o(g, y) dig(y) = f o(g, y) dg(y)

B(@) o)

dg ;¢
©.6) = [ T 0 e ) )
= ol @) [ d10,00) = od (6,80,

By (9.5),

fB L ole, ) dnCe) = fxa'.,,’(gk, £ dk = fx oolgh, x0) d

= f oo(g, kxo) dk = f a4(g, %) dm(x) = ¢(g).
K B(@)

This proves that ¢ belongs to ¢. But (9.6) also shows that ¢,4(g, xo)
=04 (g, £o) is expressed as a linear combination of functions in V.
Since the o4 are extremals this can only take place if all the o(g, y)
for y&j1(£) coincide with o4(g, x0). In other words, dg—10,,/d0,
must be identically 1, or, equivalently, the measure g0, coincides
with 6;,. The same argument implies that for all g&G, EEB’, gf:=0,:.
But B(G) is a boundary (see §3) so that some g,0; tends to a point
measure. Setting g, =k.¥., where v,.£=£ and k,EK, we must have
Ynl:=0,,:=06; tending to a point measure. This means that 6; is a
point measure and so j is 1-1. We have thereby proved that a4(g, x)
separates points in B(G).

It is now an easy matter to show that o, is basic. For, since the
functions o4(-, x) are distinct for distinct x& B(G), it follows that
B(G) coincides with the normalized extremals of V,. Now suppose
SB@0s(g, x) dw(x) 20 for some signed measure w on B(G). From the
fact that V, is a lattice, by the corollary to Theorem 6.1, this inequal-
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ity implies that w=0. This, however, was just the condition for o4
to be basic. This completes the proof of the theorem.

COROLLARY. 4 multiplier s is basic if and only if it is equivalent to
a4 for some spherical function ¢.

Very little is known regarding the subset H3(B(G)) of the linear
space H(B(G)). For example, is it a semigroup, and is it closed under
the operations ¢—0”, r =17

10. Application to the Choquet-Deny representation. We shall
apply the results of §9 to obtain more precise information regarding
the extremals of Vy\(¥).

TuaEOREM 10.1. If 5(+, %) s an extremal of VaA(¥), then the multiplier
s 1s basic.

ProOF. As in the proof of Theorem 9.1, we form the space B’
which is obtained from B(G) by identifying x;, & B(G) if s(g, x1)
=s(g, x2). We have an equivariant map j: B(G)—B’, and s(g, x)
=s'(g, j(x)), where s'€ M(B’). Again, it will suffice to prove that
B’=B(G). For, A({) is a lattice, and so by the corollary to Theorem
6.1, if [s'(g, £) dw(£) 20, then w=0.

Let ¢’ be the K-multiplier equivalent to s’ on B’. The functions
d’(-, £) are semi-spherical and belong to V, for some ¢. So, by Theo-
rem 7.1,

(10.1) (g 8) = f oot ) a0,

where o, is the basic multiplier belonging to ¢. Because g4 is basic,
the measures 6; in (10.1) are uniquely determined. Now use the
multiplier equation:

g0 = [ oalre, ) a0

= [ st 809040, 9 80:) = [ outor, Doele, ) datite)
But ¢'(vg, £) is also equal to

0,808, 0 = [ aulr, (e, ().
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Comparing the two expressions as functions of v, we have
(10.2) oo(g, §7'%) dgBe(x) = o’ (g, £) de().
Now we can write

, _ 2 .
s'(g, ) Py (8 9,

where p’ is a positive continuous function on B’. Since s'(-, £) € A(),
(10.3) [ #6006 090 3 = 200,

Form the convex set Q of all functions p(x), continuous and non-
negative on B(G), and satisfying

(10.9 [ 2 02y = 0.

If we recall the proof of Theorem 8.1 we see that the maps £—6; of
(8.15) and (10.1) are the same. As a result 0; has its support on j~1(£).
It follows that Q is nonempty since the function p =2’ o j~! will be-
long to Q.

Define a linear transformation T on the space of continuous func-
tions on B(G) by

Tp@) =3 [ plemiosle, W) ds.
Then

x [ [ a0uts, 006 dainr=xt [ [ p(e)eate ) dgsecowvte) an
By (10.2), we have
10.5 [ 7o) dow) = 3+ [ [ pa)e' 6,0 donearv(o) s
If pEQ, this equals
xi [ #6006, 090 3 = #®.

It follows that T takes Q into itself.
The functions in TQ form an equicontinuous family. For
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| Tp(ka) — To() |
=3 [ plemoste (| v — we) D de

10.6
ae-0 =3 [ [ psgedente, (| 908 hag) — ¥(a9)|) dit

< 4 [ 50 im(5)-max| y(-1g) = ¥(@) |,

where A =N"! max o4(g, ¥) and the maximum is taken over all
xE B(G) and all g for which some k’g is in the support of ¢, ¥ EK.
Now, by (10.4),

[ 16)m) = [ @ amco

so that the right-hand side of (10.6) goes to 0 as kx—x independently
of pEQ. . .

As a result, 7°Q is a compact convex set and T maps 7Q into itself.
It follows that T has a fixed point in Q; that is, there exists a function
p(x) satisfying (10.4) and

(10.7) [ [ #enreets, 99060) dg = 200@).

If we set f.(g) = p(gx)os(g, x), we then find that £,E€ V(). Now

[ 10 00 = [ pamroate, » oo = [ p6osta, £ dasete)

By (10.2), this gives

[ 10 a0 = [ )" a, 0 douita) = o6, 08 (60) = #' @550,

since p&(Q. This expresses s'(+, £) as a linear combination of the
functions f, which are in V,(¥). However, the s'(-, £) were taken to
be extremals of Vi(¥). It must therefore be the case that all the f,
with x in the support of ; are proportional. If j were not 1-1, that
is, j(x%1) =j(x2) for some pair x;1, ;& B(G), then, since f;, and f., are
proportional,

p(gx1) p(gx2)

10.8 ——= a4(g, %) =
(10.8) 22 o(8, #1) 2n)

0’4‘(87 x2)-
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Replace g by kg and integrate both sides of (10.8) over K. This gives

a4(g, %1) _ as(g, %2) .
p(x1) p(x2)

Setting g=e we find p(x1) =p(x2) and o4(-, x1) =04(+, %2). Since oy
is basic this cannot happen unless x; = x,. This proves that jis 1-1 and
hence that B’=B(G). This completes the proof of the theorem.

As a result, the statement of Theorem 8.1 may be made more pre-
cise. That is, the normalized extremals of Vi\(¥), which are already
known to be multiplier functions, are now known to be basic multi-
plier functions. We now give a more precise form to the Choquet-Deny
representation for VA(¥). For each cohomology class n& H(B(G)), we
denote by o, the unique K-multiplier in that class. ¢, belongs to a
spherical function which we shall denote ¢,.

LeEMMA 10.1. For each cohomology class n=H(B(G)), there exists a
uniquely determined positive constant A(n) and a positive continuous
Sfunction p,(x) on B(G), unique up to a constant multiple, such that

(10.9 [ #ares D9e) de = A2

Proor. Let Q denote the convex set of non-negative functions p(x)
on B(G) satisfying [p(x) dm(x) =1. Let T denote the transformation
of Q into itself defined by

75) = o(9) [ pendons, 290(a) de,

where c(p) is a constant chosen so that Tp& Q. One verifies that the
functions of 7Q form an equicontinuous family so that 7Q is a com-
pact convex set. If p, is the fixed point of T in T(Q then there is a
constant A(n) so that (10.9) is valid.

The uniqueness of A(n) follows from

[ 2o e de
(10.10) -
[ #we6 290 45

If A/N <1 we choose x so that p/p’ attains its minimum at x; then
(10.10) becomes contradictory. So A=\ and similarly N’ <\. Thus
there is a unique eigenvalue for which (10.9) can have a solution. Now
if p, satisfies (10.9), then the multiplier functions

A p)
e
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Pa(g2)
Pa()

belong to V¢, (#), and, by Lemma 8.1, p, is thereby uniquely deter-
mined. This completes the proof of the lemma.

If we compare the multiplier functions on G with the exponentials
¢t on the real line, then we see that A(y) corresponds to the Laplace
transform of the functions ¥(g).

We can now formulate the Choquet-Deny representation as fol-
lows:

THEOREM 10.2. Restrict the function A(n) to the subset Hy(B(G))
CH(B(Q)), so that for each N\>0, A~'(\) CHy(B(G)). Then, for each
‘unction & V\(§), there exists a measure w on A—*(\) X B(G) such that

ay(g, %)

(10.11) fle) = j:r‘(x)xs(o) po(gx)a4(g, %) dw(n, ).

In considering A—'(\) X B(G) as a measure space, we have imbedded
it in VA(¥) and taken the induced Borel structure. We do not as yet
know enough about the function A(n) to claim that A—1(\) is a Borel
subset of H(B(G)).

What has been gained by our analysis as regards the integral equa-
tion

fG A OW) dg’ = M(g)

is this. We have replaced a single equation for a function on a non-
compact space and which, moreover, does not have a unique solu-
tion, by a family of equations (10.9) for a function A(y) and a family
of functions p,(x) on the compact space B(G) which now have a unique
solutions.

Theorem 10.2 still leaves open the uniqueness of the measure w.
Although we know that the representation in terms of normalized
extremals of V,(¥) is unique, we have not shown that every multiplier
function corresponding to a point in A~!(\) X B(G) is an extremal.
This we shall do in the next theorem.

THEOREM 10.3. The normalized extremals of V\({) consist exactly of
those multiplier functions s(-, x), xEB(G), such that s is basic, and
s(+, x) belongs to V\(¥).

Proor. We have already shown in Theorem 10.1 that if s(-, x) is
extremal in V,(¢) then s is basic. We now show the converse. Suppose
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then that s is basic and s(:, x) € Va(¥). By Theorem 10.2 there is
some measure w with

101 s@m = [ puenonte ) daln, ).
ATQ)XB(@)
Here we may assume that the multiplier functions
+(82)
(10.13) sq(g, ) = . ou(g, %)
Da(%)

are extremals of Vy\(y) for those 5 occurring in this representation. If
s~a where 0 € Mx(B(G)), then, by (2.3),

fK s(kg, %) dk = ( fx sk, %) dk)a(g, %) = S@o(g, 2).
By (10.12)

swega = [ ([ p6) in))orte ) duta,)

AT OXB(@)

or
(10.14) o(g, %0) = f a4(g, %) do’(n, x).
AL OXB(@)

Setting g=e¢, we see that ' is a probability measure. Replacing g by
gk and integrating both sides of (10.14) over K we find

0@ = [, o).

Here ¢ is the spherical function to which ¢ belongs. Now replace g by
gkg and integrate over K. We have, by (3.2),

0@ = [ airarw

- { L—l(x) 9:(8) dw"(n)} "

Now o'’ is again a probability measure, so (10.15) shows that ¢, is
essentially constant as a function of 5. This means that o'’ is concen-
trated on classes n with the property that ¢,=¢. All we need, how-
ever, is the fact that for some %, ¢,=¢. We have s basic and o~s. It
follows that ¢ is basic; so ¢ =04 for some spherical function ¢/, by

(10.15)



316 HARRY FURSTENBERG [March

Theorem 9.1. Since g4+ belongs to ¢’ and ¢ belongs to ¢, we must have
¢’ =¢ and so ¢ =g,. Since the 7 occurring in (10.12) are basic classes,
oy is basic and so ¢,=04, =0,=0. As a result, s~o, But o,~s,
((10.13)), so s~s, Now the multiplier functions s(-, x) and s,(-, x)
are in VA(¥) and, by Lemma 8.1, since s~s,, we must have s=s,.
Since the functions s,(-, x) are extremal, it follows that the functions
s(+, x) are extremal and this proves our theorem.

This theorem implies that the normalized extremals of V,(¢) cor-
respond exactly to the points of A~'(\) X B(G), the correspondence
being given by

P4(g%)
Da(%)

Since the representation of elements in V)(¢) in terms of measures
on the normalized extremals is unique, we have:

(’77 x) - o'n(g, x)'

COROLLARY. For each function f& V\({), the measure w in (10.11) s
unique.

The eigenvalue function A(n) was defined originally for all
nEH(B(G)). It is not an arbitrary function; in particular, it is deter-
mined in all of H(B(G)) by its values in Hy(B(G)). This follows from
the fact that the Choquet-Deny representation depends only on the
restriction of A(n) to Hy(B(G)). However, we can make a more precise
statement.

DEerFINITION 10.1. We shall say that two classes 7; and 5. in H(B(G))
are related if ¢, =@y,

Thus every class is related to one and only one basic class.

THEOREM 10.4. If 91 and 72 are related, then A(n) =A(n2).

PRrOOF. Suppose s is a multiplier in the class 7 such that s(-, x)
€ Va@). Then N\=A(n1). By Theorem 10.2,

(10.16) s(g, %) = f B Da(gx)a4(g, %) dw(n, x).
A 9B (@)

Replacing g by kigk. and integrating both sides of (10.16) over K XK
we obtain, as in the proof of Theorem 10.3,

(10.17) 6@ = [ 60 4.
o)

As in the proof of Theorem 10.3, it follows that 5 is constant in the
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integration (10.17), and ¢,,=¢,. Since nESA7*(\), we have A=A(n)
=A(n). Now 7 is the uniquely determined basic class related to g
since ¢,, =@, and 7 is basic. The same reasoning then implies A ()
=A(n), so A(n1) =A(n2). This completes the proof of the theorem.

11. Irreducible multipliers. If s& M(B(G)), let V(s) denote the
closed cone of functions on G generated by s(-, x), x&B(G). Here
closure will mean with respect to the topology of pointwise conver-
gence on G. V(s) is identical with the functions

fulg) = fB 56, %) o),

where w ranges over the positive measures on B(G). That this family
is closed follows from two facts. First, if f,(e) is bounded, then the
measures w are bounded and lie in a compact set. Secondly, the map
w—f, is continuous with respect to the weak topology on positive
measures.

The cones V(s) are obviously closed under (right) translation.
We may inquire for which s the cone V(s) will be ¢rreducible, that is,
have no proper closed, translation-invariant subcone. For example, if
v is a smooth measure on B(G), the multiplier s(g, x) = (dg~/dv)(x)
is not irreducible. For [s(g, x) dv(x) =v(B(G)) is constant, and if V(s)
contains a constant it cannot be irreducible unless it reduces to the
cone of positive constants.

DerFINITION 11.1. We say s& M(B(G)) is trreducible if the cone V(s)
contains no proper closed translation-invariant subcone.

Let m denote the K-invariant probability measure on B(G). We
shall use o, to denote the K-multiplier defined by

dg'm
dm

(11.1) ao(g, %) = (%).

LeEMMA 11.1. If s* is a basic multiplier, then s=ao/s* is trreducible.

Proor. A typical function in V(s) is f(g) = [s(g, ) dw(x). To prove
that s is irreducible, we must show that given any f& V(s), the func-
tions s(-, x) can be retrieved from f by taking limits of positive linear
combinations of translates. We first form

(11.2) F(g = Lf(gk) dk = LL(G)s(g, kx)s(k, x) do(x) dk.

Now, fixing x,&B(G), let x=k'x,. Then
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1 ’ !
L s(g, kx)s(k, x) dk = TS L s(g, Bk xo)s(kE', x0) dk
1 1
(11.3) = S 70 j;s(g, kxo)s(k, %0) dk = WFo(g)-

From (11.2) and (11.3) we see that F(g) is proportional to Fo(g),
where the latter function is independent of w, and thus independent
of the function fin V(s). It follows that the function Fy(g) belongs to
every closed translation-invariant subcone of V(s). Fo(g) may be re-
written as

(11.4) Folg) = f 56 0 dn(:),

where h(x) is a positive continuous function on B(G).

Recall Lemma 9.3 according to which s* is basic only if the func-
tions of the form [s*(g, x) du(g), p =0, are dense in the positive con-
tinuous functions on B(G). In particular, if U is any neighborhood of
a point £, B(G) and €>0, there exists a measure u on G with

N@) = [ 69 o) <e for =&,

(11.5)
N(x) dm(x) = 1.
B(@)
Then
Folgr™) = f s 7, ) )
= f . s(g, ©)s(yY, y) h(yx) dy~'m(x)
B(@)
- f 5 91, 9 HODaelr, ) o)
= [ ste 25, 1) am(a).
B(@)
So

S rtryae - [ i 3| [ stn ik duter) | am).
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Since [as*(v, x) du(y) approximates a §-function in x with respect to
the measure m, and since k(x) is bounded from above and below, it
follows that

fos*('y, x)h(vx) du(y)

approximates a multiple of the same §-function. More precisely, we
see from (11.5) that

f Folgy™) du(y)

~ s(g %) | SmaxC|s(g, #) — s(g %0) |,

z€U

f Fo(v-) du()

where C is a constant depending upon k(x). Consequently, with an
appropriate choice of measures u,,

f Fo(gy™) dua(v)

— (g, %0), asn— w,

f Fo(r~) dua(y)

for each g. It follows that s(-, x,) belongs to every closed translation-
invariant cone containing Fo(g) and so V(s) is irreducible. This com-
pletes the proof of the lemma.

We turn now to K-multipliers.

LeMMA 11.2. For each spherical function ¢ there is one and only one
K-multiplier belonging to ¢ which is irreducible.

Proor. That at least one K-multiplier belonging to ¢ is irreducible
is easily established. If ¢(g) is spherical, then ¢(g) =¢(g™?) is also
spherical. Suppose ¢* is the basic multiplier belonging to ¢, and form
g=0y/d*. Then

dgm
(x)dm(x)

g
[ s = [ oae
B(G) B(&) dm

1
= f - ao(g, x) dm(x)
B o(g, %)

= [ o) dna
B(@)
= ¢(g™) = ¢(g).
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So o belongs to ¢ and is irreducible by the foregoing lemma.

Now suppose that ¢; and o2 are related K-multipliers (Definition
10.1) which are both irreducible. Since ¢(g) = [p(@0:(g, x) dm(x), we
have ¢ & V(o1) M\ V(o2). If both cones are irreducible, we must have
V(e1) = V(03). In particular, we have

02(g7 %) = fo'l(g; x) dwl(x)y
(11.6)

ois, ) = [ ox(g, ) dena)

for two positive measures w;, w; on B(G). One can find measures
M1, M2=0 on K with w;=u; * %9, and (11.6) becomes

oa(g, %) = j;{dx(gk, o) dpa(k),

o1(g, xo) = fﬂz(gk, %o) dua(k).
K
Combining these two:
(11.7) 7iey ) = [ ouleh, ) dus s ).
K

Let u™ denote the n-fold convolution of u, * u; with itself. It is not
hard to see that #~'[u®™+ - - - +u™] converges, as n—», to the
Haar measure of the least subgroup K; CK which contains the sup-
port of us * w1 [6, pp. 343-344]. Since (11.7) would be valid with u®
replacing s * y, it follows that one may write

o1(g, x0) = f o1(gk, xo) dk.
K;

Hence, o1(gk, xo) =01(g, xo) for every k€K, If P, and P; denote,
respectively, the supports of us and y;, then P,P; CK;. In particular,
P, is contained in some left coset k;K;. Then

oiley %) = [ orlghik, %) k(e
K

1

But the support of k7 'u; is in K; and the k€ K; leave o} invariant. So
a2(g, %)) = o1(gk1, x0) = o1(g, k1)) = 01(g, *1)-

But we have seen in §7, using Lemma 7.2, that this implies o1 =05.
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This completes the proof of the lemma.
We can now prove the main result of this section.

TaEOREM 11.1. A multiplier s is irreducible if and only if oo/s is
basic.

Proor. The implication in one direction is given in Lemma 11.1.
What remains to be shown is that if s is irreducible, then (/s is
basic. We claim thatif s is irreducible and ¢ is the K-multiplier equiv-
alent to s, then o is irreducible. To see this, consider the operator
with domain V(s) defined by

Tf(g) = fK f(kg) dk = mz * (g).

Since T commutes with right translation, it follows that TV(s) is a
translation-invariant cone. Moreover,

Ts(g, x) = Lx(kg, x) dk = a(g, x)[ fs(k, x) dk]

so that a(-, x) ET V(s). It is also easy to see that T V(s) is closed, so
it follows that TV (s) D V(s). Now, since V(s) is irreducible, it follows
that TV(s) is irreducible, which implies that T'V(s) = V(¢), and that
V(o) is irreducible, whence ¢ is irreducible. Let ¢ belong to ¢. By
the foregoing lemma, o is the only irreducible multiplier belonging to
¢. On the other hand, we know that if o* is the basic multiplier be-
longing to ¢(g~Y), then oo/c* isirreducible and belongs to ¢(g). So we
must have ¢ =0,/c*. In other words, if ¢ is irreducible, ay/c is basic.
But then o¢/s is basic, for e~s implies oy/0~0co/s. This completes
the proof of the theorem.

COROLLARY. If 51 and s, are equivalent multipliers in M (B(G)), then
51 15 1rreducible if and only if sy is wrreducible.

If we consider the exponentials in the real line we notice that they
obviously have the irreducibility property—the translation-invariant
cones they generate are irreducible (in fact, 1-dimensional). Thus, for
the real line, the properties of irreducibility and forming the extrem-
als in the Choquet-Deny representation are shared by the same class
of functions. In the case of semi-simple groups these properties split:
one characterizes the irreducible multiplier functions and the other
the basic multiplier functions. (It is probably true that the only multi-
pliers which are simultaneously basic and irreducible are those equiv-
alent to a¢/%.)



322 HARRY FURSTENBERG [March

12. Irreducible cones. We have mentioned the fact that the posi-
tive exponentials on the group of reals generate irreducible transla-
tion-invariant cones. In fact this property characterizes the exponen-
tials. More precisely

THEOREM 12.1. If V is a cone of non-negative continuous functions on
the reals, closed under translation and closed in the topology of pointwise
convergence, and if V is irreducible (that is, no proper subcone of V has
the same properties), then V consists of the positive multiples of some
exponential f(¢) =e%t, — 0 <a < =,

We will not give the proof of this inasmuch as it resembles that of
the analogous result for semi-simple groups which we will give. Let us,
however, sketch an alternative proof. If we know that V has a com-
pact base, then, since the reals form a Tychonoff group and act on V
by translation, ¥V must have a fixed ray, i.e., a 1-dimensional transla-
tion-invariant subcone. This must be all of V and, as is easily seen,
this implies that V consists of multiples of an exponential. The prob-
lem is, therefore, to show that V has a compact base. This may be
done by showing that if V is irreducible, the functions in V are con-
vex, secondly, that, in fact, their logarithms are convex, and, finally,
that their logarithms satisfy a uniform Lipschitz condition.

For an arbitrary topological group one can attempt to characterize
the irreducible (right) translation-invariant cones. In the semi-simple
case, this is most easily done if we assume further that the functions
in the cone are invariant under left translation by elements in a
maximal compact subgroup. Note that if a cone is irreducible (with
respect to right translations) and if one function has this property,
then so do all functions in the cone.

THEOREM 12.2. Let V be a cone of continuous non-negative functions
on G closed under (right) translation and closed in the topology of point-
wise convergence. Assume V is irreducible, that is, that no proper sub-
cone of V has these properties. If, furthermore, there is a funciion f&CV
with f(kg) =f(g) for all REK, then V coincides with V(s) for some
irreducible K-multiplier o.

We remark that since the functions of V may be thought of as func-
tions on K\G, the question is that of characterizing cones of non-
negative functions on a symmetric space, invariant under the isom-
etries of the space, and irreducible with respect to this property.

Proor. We convert the problem into one involving cones of meas-
ures. Identify ¥ with a subcone of the cone of positive (unbounded)
measures on G and let ¥ denote the closure of V in this space. Sup-
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pose w is a measure on G corresponding to a continuous function of
compact support. Then V*wCV by the translation invariance of
V, and, since w,—7 weakly implies 7, * w—7 * w pointwise as func-
tions, it follows that ¥V * wC V. Suppose that ¥ is not irreducible,
and suppose that WV is also invariant and weakly closed. Then
W * o CWMNYV so, then, WNV is nonempty. By the irreducibility of
V, WN\V=Vor WDV and, since W is weakly closed, W= V. Hence
V is irreducible.

Let Vk denote the set of measures #& V such that 7 * k== for each
k& K. Under the hypotheses of the theorem, it is true, for every
w7 & V, that k *w=m.So the measuresin Vg have the form mg * 7’ * mg.
By Lemma 7.1, measures of this form are commutative when the
product is defined.

Notice that Vg is invariant under the operations w—m * v * mg,
yEG. We claim that Vg is minimal with respect to this property. Let
W C Vk be closed and invariant under 7— * vy * mx for all yEG.
Form W= {nEV: 7 * g * mgC W for all gEG}. Clearly W’ is right-
invariant, weakly closed, and W’ DW so it is not empty. So W' =V,
or Vxmg=VgCW. Thus W= Vg.

Let w be a measure of compact support on G and form Vg * w * mg.
This cone is closed, for, if m, * w * mx converges, a subsequence of
{1r,.} must converge weakly (r * w * mg(A1A2) Z7(A)w * mx(As)). We
also have Vg sw*mg vy *mg=Vg *v * mg *w * mg C Vg * w * mg.
Also Vg *xw *mx CV » mg = Vg, so that Vg * w * mx is a subcone of
Vk invariant under 7— * v * mg. So Vi * w * mg = Vk.

Now Vk is a weakly closed cone of positive measures on G, so, by
Theorem 6.1, it is spanned by its extremals. Let 7 be an extremal of
Vx. By what has just been shown mo=m, * w * mg for some measure
m.& Vk. But this expresses 7y as a linear combination of measures
T, * g * mg & Vg. Since m, is extremal, these must be proportional for
almost all g in the support of w. By continuity, this will be true for all
g in the support of w. Moreover, if the identity of G is in the support
of w, then m, will itself be proportional to m,. We then find that
o * g * mg is proportional to m for all g in the support of w. Since w
had arbitrarily large support, we must have

(12.1) mox gl xmg = $(g)mo.
Since mo=mg * o * mg, we have
Mo* E¥MEK = MR *Wo* MR * g* Mg = MK * E*¥ MK * T * Mg = MK * g * wo,

so that
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(12.2) mg * gl my = ¢(g)1ro.

This, however, is the defining equation (7.1) for semi-spherical func-
tions. That is, ¢ must be spherical and 7, corresponds to a function
@e V¢. SO

2 = [ oue®) o)
B(@)
for some v =0 on B(G). But ®(gk) =®(g) since my& V;, so that

a(g) = fB . fK oo(g, k) dbdv(x)

= a'¢(g, x) dM(x) = ¢(g)'

B(G)

We have proven that if V is irreducible, some spherical function
¢E V. Now V * wCV if w corresponds to a continuous function with
compact support, and ¢ * w is proportional to ¢ if ¢ is spherical and
w is radial. Hence, ¢ & V. Now let ¢ be the (unique) irreducible K-
multiplier belonging to ¢ (Lemma 11.2). Then V(o) contains ¢ and,
hence, V(6) N\ V is nonempty. It follows that V= V(¢). This completes
the proof of the theorem.

ReEMARK 1. The result would not have been altered if the topology
on the cone V had been taken to be that of uniform convergence on
compact subsets.

REMARK 2. Whenever a group is represented by automorphisms of
some structure, we may speak of an irreducible representation when
the structure is minimal with respect to invariance under the action of
the group. Traditionally, the structure is assumed to be that of a
(topological) linear space; in this section we have taken it to be that
of a closed cone. Another possibility would be to let the structure
be that of a compact convex set. For example, every bounded meas-
urable function on G generates a translation-invariant compact con-
vex set in L®(G) (with the weak* topology), and we may inquire
when this gives an irreducible representation of G. Using [6] it is
easy to show that, up to isomorphism, the irreducible representations
of a semi-simple G on compact convex sets are just its representations
on the space of probability measures on one of its boundary spaces
(the equivariant images of B(G)). With this it may be shown that
the irreducible weak* compact convex sets in L®(G) are just those
which are spanned by a function f(g) satisfying f(gk) =f(g) for all kEK
and which, as a function on the symmetric space G/K, is harmonic.
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APPENDIX. LEMMA 5.2. If 7 is a measure on G satisfying tw=x(t)w
for t&T, and x a positive character on T, then w=m¥ * u for some posi-
tive measure u on G.

Proor. Form the cone V of measures 7 on G satisfying tr=x(f),
m=0. Let h(g) be a non-negative continuous function on G with com-
pact support and such that (k) >0 for kEK. If, for 7€V, w(h) =0,
then [h(tg) dw(g) =0 for all t& T. But the interiors of the supports of
the functions k(tg) cover G since TK =G. This would then imply that
=0, so we see that w(k) >0 for all 7€V, #£0. We can now apply
Theorem 6.1 to the weakly closed cone V, and we find that each
m& V has an integral representation in terms of normalized extremals
of V. We see then that the lemma will be proved once we establish
that the extremals of V are the measures m% * v, yEG, up to a multi-
plicative constant.

Let #& V and form the measure 7, given by

#a(f) = f f(8)Ca(Tg) dx(g),

where A is a set in T\G and C, denotes its characteristic function.
Now it is readily seen that w5 again belongs to V. So if 7 is extremal
in V it must be concentrated on a single coset Ty. Then 7 *y 1=,
is concentrated on T and satisfies imy=x(f)mo. Define the measure
mon T by

dri(t) = x(t) dwo(s).
If 7&T, then

drmy

© =2 1) = x()
= — (%) = x(="Y4).
drmg dmo x

But (drmo/dmo)(t) =x (1), so

drm drm
® =

d'll'o - dTﬂ'a

9T 1) = x(x(r) = x() = ¢
® dn()—x(f Ix(7) = x )_dwo().

Hence rm1=m for all €T So m is proportional to Haar measure on
T and

dno(t) = ex(-Y) dt,

and mo=cm¥%. Since every extremal 7 of V has the form m, * v~ for
some ¥ &G, our lemma is proven.



326 HARRY FURSTENBERG

BIBLIOGRAPHY

1. F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math.
France 84 (1956), 97-205.

2. G. Choquet, Le théoréme de représentation intégrale dans les ensembles convexes
compacts, Ann. Inst. Fourier (Grenoble) 10 (1960), 333-344.

3. G. Choquet et J. Deny, Sur I’éguation de convolution u=p * ¢, C. R. Acad. Sci.
Paris 250 (1960), 799-801.

4. N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York,
1958.

5. E. B. Dynkin, Non-negative eigenfunctions of the Laplace-Beltramsi operator and
Brownian motion on certain symmetric spaces, Dokl. Akad. Nauk SSSR 141 (1961),
288-291 (Russian); translated as Soviet Math. Dokl. 2 (1961), 1433-1436.

6. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math.
(2) 77 (1963), 335-386.

7. 1. Gel'fand, Spherical functions on symmeiric Ri spaces, Dokl. Akad.
Nauk SSSR 70 (1950), 5-8. (Russian)

8. S. Helgason, Differential geomeiry and symmetric spaces, Academic Press, New
York, 1962.

9. L. Loomis, Unique direct integral decompositions on convex sets, Amer. J. Math.
84 (1962), 509-526.

10. C. C. Moore, Compactifications of symmetric spaces, Amer. J. Math. 86 (1964),
201-218.

11. Séminaire Sophus Lie, Théorie des algébres de Lie, Fcole Normale Supérieure
1954/1955.

UNIVERSITY OF MINNESOTA




