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Let R be a principal ideal domain, X a set, and A the free associa­
tive algebra over R on the set X. Then A is a supplemented algebra 
over R, where the augmentation e A: A—>R is the unique map of alge­
bras extending x—>0, # £ X , given by the universal property of A. 
We denote Zi(A)=coker 7i&*: Ki(R)—^Ki(A)f where rj: R—>A is the 
unit.1 

THEOREM 1. 2!i(A)=0, or, equivalently, TJA*: KI(R)—*KI(A) is an 
isomorphism. 

We remark that Theorem 1 applies to the case R = Z, the ring of 
integers, or R = any field. Since TJA* is a monomorphism for functorial 
reasons (€A^A= 1: R—*R), the two assertions of Theorem 1 are seen to 
be equivalent. 

LEMMA 1. Any regular matrix T over A is equivalent by elementary 
operations to a regular matrix of the form 

M = Mo + M\X\ + M2X2 + * • ' + Mn%n> 

where Mi (0 S-iSn) are matrices over R and xt, #2, • • • , xn are distinct 
elements of X. 

The proof is a standard exercise and will be omitted (see also [3]). 
Using the notation of Lemma 1, if we apply €A, we see that Mo is 

a regular matrix over R. Thus, [Af]= [Mo~lM]ÇiKi(A)t and 
[M]<E"Ki(A) is represented by an mXm matrix of the form 

(1) ff = 1 + NlXl + N2X2 + • • • + Nn*n, 

where Ni (1 Si'un) are matrices over R, and Xi, x2, • • • , xn are dis­
tinct elements of X. 

LEMMA 2. The subalgebra {without unit) 5ft, generated by 
Nu N2, • • • , Nn, of the ring of endomorphisms E(R, m) of a free 
R-module of rank m, is nilpotent. 

PROOF. Since N is regular, there is a matrix 
1 If R is a ring (associative, with unit), then KiÇR)=GL(R)/£(K) where GL(R) 

«dirjimit GL(«, R) and &(R) =dirjimit 8(n, R), where 8(«, R) is the subgroup of 
GL(n, R) generated by elementary matrices (see Bass [1]). 
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A — A0+ A1X1 + • • • + AnXn + X AijXiXj 

n 

+ ]C AijkXiXjXk + • • • 

over A, where the Aif A a, • • • , are matrices over R, such that 
AN=1. By equating coefficients of monomials in the x's, we derive 
the relations 

A0 = 1, 

Ai + Ni = 0 =» Ai= - Ni9 1 â * ̂  », 

i4y + ^,-2^ = 0 =»i4</ = NiNh 1 ^ f,y ^ », 

^ V » * , + AixNi%...if = 0=» Aili%...ir = (-îyNifli, • • •#<„ 

1 g i,-, i2, • • • , ir ^ ». 

Since -4 is a finite sum of the terms indicated, we deduce that there 
is an r such that N^N^ • • • Nit = 0, all s^r, 1 ̂ i 'i, i2, • • • , is^n. 
This fact, and the commutativity of R, establish that Sft is nilpotent. 

THEOREM 2. If Ris a principal ideal domain, any nilpotent subalgebra 
9t of E(R, m) can be put in upper niltriangular form; that is, a basis for 
the free module Rm of rank m over R can be chosen so that any T^3tis 
represented by a matrix { Ty] with 7\y = 0 if i^j. 

Assuming Theorem 2, let us prove Theorem 1. From Lemma 2 and 
Theorem 2, there is a regular matrix B over R such that B~lNiB is 
upper niltriangular, l^i^n. Thus 

(2) B~lNB = 1 + BrlNiBxi + B~lN2Bx2 + • • - + B-lNnBxn, 

and it is easy to reduce the matrix on the right-hand side of (2) to 
the identity by elementary column operations. Thus [N] = [B^NB] 
= 0 in J£I(A) and, since we started with an arbitrary regular T, and 
[T] = [N], we have shown [ r ] = 0 in Zi(A). 

PROOF OF THEOREM 2. The proof proceeds by induction on m. If 
m = 1, the theorem is trivial, since R is a domain. Assume the theorem 
is true for m = 1, 2, • • • , k — 1. We shall show it is true for m = k. Let 
F be a free i?-module of rank kf 91 a nilpotent subalgebra of E(R, k) 
(we have chosen some basis of V so that E(R, k) acts on V on the 
right). Then 

V D VW D • • • D VVl*-1 D VW = 0 
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for some integer r. Now V%1 is a submodule of a free jR-module V of 
finite rank fe, hence is free of rank ^fe. In fact, by passing to the 
quotient field of R, and using the fact that 9tr = 0, we see that rank 
Vyi is <k. Now by the theorem of elementary divisors (Bourbaki 
[2]), wre can find bases 

vi, i>2, ' ' ' , Vi, Viiiy flt+2, • • • , vu for V, 

ui+h ui+2, • • • , uk for V% 

where i^l, and elements ri+i, rt+2, • • • , rk<ER such that 
/ 1 1 

Ui+\ = n+lVi+i, Ui+2 = ri+2V%+2, ' ' • , Uk = rjfcl'fc. 

Let Vi be the submodule of V generated by (ty'+i, ^'+2, • • • 1 v£) 
so rank F i < ^ . Now F i ^ C ^ S Î C V'i, so $ft can be considered a nil-
potent algebra of endomorphisms acting on V±. By the inductive 
hypothesis there is a basis vi+u Vi+i, • • • , Vk for Fi so that each 
matrix of 31 restricted to V\ is in upper niltriangular form with re­
spect to this basis. Extend Vi+i, • • • , Vk to the basis Vi, • • • , vif 

Vi+i, • • • , Vk of V. Then it is easily seen that each matrix of 5R is in 
upper niltriangular form with respect to this basis of V. This com­
pletes the proof. 

The author does not know whether theorems more general than 
Theorems 1 and 2 are valid. To show that some restrictions on R are 
needed, let R be a commutative ring with a nilpotent element a(~R 
(e.g., R = Z4, the ring of integers mod 4, a = 2). Let X = {x}. Then the 
1X1 matrix 1+ax is regular, but it is easily seen, by taking determi­
nants, not to be in the image of 77* : K±(R)—>K\(R[x]). Furthermore 
the ideal aR is a nilpotent subalgebra of 1 X1 matrices which cannot 
be put in niltriangular form. 
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