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1. Introduction. Category, functor, and natural transformation of 
functors are notions of great generality—and consequent simplicity. 
They apply to many different parts of mathematics. Now 22 years 
old, they have recently attracted especially active interest in many 
quarters. This interest is probably a reflection of the very rapid cur­
rent proliferation of mathematical ideas—a situation favoring and, 
indeed, almost requiring unifying notions such as those of category 
and functor. 

This article, a revision of the notes used in the Colloquium Lec­
tures of the American Mathematical Society for 1963, will summarize 
a number of the developments which use categories, with particular 
attention to the ubiquity of adjoint functors, the utility of abelian 
categories, a unified categorical treatment of types of algebras, rela­
tive homological algebra via adjoint functors, differential graded ob­
jects, and universal algebra via suitable "very small" categories. For 
some items of detail, I refer to my book Homology [77] and references 
in the style "Gertrude Stein [1929]" are to the bibliography there. 
Other references, in the usual style, are to the bibliography at the 
end, which is intended to cover recent literature of the subject in 
tolerable completeness. 

Especial acknowledgments are due to S. Eilenberg, with whom I 
collaborated in the initial development of some of the ideas presented 
here. My own approach has also been much influenced by the stimu­
lating ideas of a number of young mathematicians, especially Freyd, 
Harrison, Kelly, Lawvere, and Linton. My studies on this subject 
have been supported in part by a grant from the National Science 
Foundation, and more extensively over the years under several con­
tracts and grants from the Air Force Office of Scientific Research; 
the preparation of the revision of this paper was supported in part 
by the National Science Foundation under grant NSF G-16428 to 
the American Mathematical Society. 

CHAPTER I. FUNCTORS AND ADJOINTS 

2. Categories. Let C be a class of objects -4, B, C, • • • together 
with a family of disjoint sets horn {A, B), one for each ordered pair 
A, B of objects. W r i t e / : A-*B for/Ghom(^4, B), and call ƒ a map or 

Received by the editors October 6, 1964. 

40 



CATEGORICAL ALGEBRA 41 

a morphism of C with domain A and codomain B. Assume a rule which 
assigns to each p a i r / : A-+B, g: B—+C of morphisms a unique mor­
phism gf—gof: A—>C, called their composite, and note that this com­
posite gf is defined precisely when the range of ƒ is the domain of g. 
There are two axioms: 

Associativity: If/: A—>B, g: B—>C, and h: C-+D, then h(gf) = (hg)f; 
Identity: To each object B there exists a morphism 1^: B-+B such 

that always 

V = / , gU = g, for f:A->B and g:B-»C. 

Under these axioms, C is called a category. In a category C the set 
horn (A, B) of morphisms from A to B will be variously denoted as 

hom(^, B) = homc(,4, £) = C(-4, B) = C 

Given the object J3, the identity morphism lj? is uniquely deter­
mined by the properties displayed above. Indeed, a category may be 
described completely in terms of its morphisms, ignoring the objects. 
Thus let C be a class of "morphisms" ƒ, g, h in which a composite gf 
is sometimes defined. Call a morphism u an identity of C if uf= ƒ when­
ever the composite uf is defined and gu = g whenever gu is defined. 
The axioms then are: 

(i) The product h(gf) is defined if and only if the product (Jig)f 
is defined. When either is defined, they are equal. This triple product 
will be written as hgf ; 

(ii) The triple product hgf is defined whenever both products hg 
and gf are defined; 

(iii) For each morphism ƒ of C there exist identities u and u' such 
that u'f and fu are defined. 

It is readily verified that this definition is equivalent to the pre­
ceding one and that the identity morphisms are precisely the mor­
phisms ltf, which are in one-one correspondence IB++B with the ob­
jects. A category with only one object (often called a monoid) is 
just the same thing as a semigroup with identity element. 

In a category C, a morphism e: A-+B is invertible (or an equiva­
lence) if there is a morphism e': B—±A with e'e=lA and ee'— \B* If 
ef exists, it is unique, and is written as ef = e~1. As usual, (e^)"1 

— e^er1 when eie2 is defined and both e\ and e% are invertible. Two 
objects A and B are equivalent in C if there is an invertible e: A-+B. 
A category in which every morphism is invertible is a (Brandt) 
groupoid; a, groupoid with only one object is a group. 

Q-
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A morphism k: A-+B is monic in C if it is left cancellable. Dually, a 
morphism u: A-+B is epic if it is right cancellable. 

An object T is terminal in C if to each object A there is exactly 
one morphism A—*T. (This terminology is due to J. A. Zilber.) If T 
is terminal, the only morphism T-+T is the identity, and any two 
terminal objects in C are equivalent. Dually, an object / in C is 
initial if to each object A there is exactly one morphism /—>A. 

Next, some examples: 
The category Ens of sets has as objects all sets 5, JH, • • • , as 

morphisms all functions from S to T with the usual composition (gf 
means first app ly / , then g). In this category, the monies are the in­
jections (the functions one-one into), and the epics are the surjections 
(functions onto). The empty set is initial, and any one-point set is a 
terminal object. 

The category Gr of groups has objects all (multiplicative) groups, 
morphisms all group homomorphisms. Clearly, the monic morphisms 
are the monomorphisms, while, with a more delicate argument, the 
epics are the usual epimorphisms. The group with one element is both 
initial and terminal in this category. 

Ab, the category of all abelian groups, has objects all (additive) 
abelian groups and morphisms all groups homomorphisms. Again, 
monies in Ab are monomorphisms and epics are group epimorphisms. 

If R is any ring, the category R-Mod has objects all left R-modules, 
morphisms all homomorphisms of such. There is a similar category 
of right -R-modules, of i^-bimodules, etc. 

The category Top of topological spaces has as objects all topologi­
cal spaces X, F, • • • and as morphisms all continuous maps ƒ :X—>Y. 
Again, monies are injections and epics, surjections. The one-point 
space is terminal, and the empty space is initial. Similarly, one may 
form the category of all Hausdorff spaces or of all compact Haus-
dorff spaces. 

The category Htp has as objects all topological spaces X, F, • • • , 
while a morphism a: X-+Y is a homotopy class of continuous maps 
ƒ: X"»F; in other words, two homotopic maps f^g: X—> F determine 
the same morphism from X to F. The composition of morphisms is 
the usual composition of homotopy classes of maps. In this category, 
the homotopy class of an injection need not be a monic, as one may 
see, for example, for the injection of a circle into a disc (as the bound­
ing circle of that disc). This category Htp, which arises naturally in 
homotopy theory, shows that a morphism in a category need not be 
the same thing as a function. There are a number of other categories 
which are useful in homotopy theory: For example, the categories of 
CW-complexes, of simplicial sets, and of Kan complexes. 
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Ens* will denote the category of pointed sets. By a pointed set is 
meant a nonvoid set P with a selected element, written * or *P, and 
called the "base point" of P . A m a p / : P—>Q of pointed sets is a func­
tion on the set P to the set Q which carries base point to base point; 
i.e., which satisfies ƒ(*p) = *Q. The pointed sets with these maps as 
morphisms constitute the category Ens*. In this category the set {*} 
with just one point (the base point) is both an initial and a terminal 
object. A morphism ƒ is monic in Ens* if and only if it has a left in­
verse, epic if and only if it has a right inverse, and invertible if and 
only if it is both monic and epic. 

Similarly, Top* denotes the category of pointed topological spaces: 
the objects are spaces X with a designated base point *; the mor­
phisms are continuous m a p s / : X—> Y which send the base point of X 
to that of Y. Again, Htp* is the category with objects pointed spaces 
and morphisms homotopy classes of continuous base-point-preserv­
ing maps (where also the homotopies are to preserve base points). 
Both categories arise in homotopy theory, where the choice of a base 
point is always made in defining the fundamental group or higher 
homotopy groups of a space. 

Another example: Let P be any partly ordered set; that is, a set 
equipped with a binary relation a^b which is reflexive and transitive. 
Make P into a category P with objects the elements of P , while the 
set homP(a, b) is either empty or has exactly one element, the latter 
when a S b. The composition rule is then forced. Any small category 
in which no set horn {A, B) has more than one element arises from a 
partly ordered set in this way. 

These various examples indicate that each type of mathematical 
system gives rise to a corresponding category, whose objects are the 
systems of that type and whose morphisms are the maps of such 
systems. Put differently, this approach suggests that whenever a new 
type of mathematical system is defined, one should simultaneously 
define the morphisms of that system. 

A category has been described here as a "class" of objects (or as a 
class of morphisms). Here "class" is used in the sense of Gödel-
Bernays set theory: In that theory one may form the class of all sets 
or of all groups (where a group is regarded as a set with added struc­
ture, etc.). This avoids the difficulties otherwise attendant upon the 
"set of all sets." In particular, if the class of objects (and hence the 
class of all morphisms) of a category C is a set, we call C a small 
category. For certain further purposes, the treatment of categories as 
Gödel-Bernays classes does not allow enough flexibility; for example, 
one can speak of the category of all small categories but not of the 
category of all categories. These difficulties are outlined in MacLane 
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[76]. Various types of solutions to these foundational difficulties 
have been proposed: The use of "locally small" categories [76], the 
use of a set theory with an ample supply of strongly inaccessible 
cardinal numbers; Grothendieck's use of "universe," with an axiom 
insuring that every set is contained in a universes (Gabriel [1962]); 
see also Sonner [95], In closely related connections, Lawvere (un­
published) has considered axioms on the category of all sets and on 
the category of all small categories. 

3. Constructions on categories. If Ci and C2 are categories, their 
product C1XC2 is the category with objects the ordered pairs (^4i, A2) 
of objects ^U£C*, while a morphism (Ai> A?)—*(J5i, B2) is an ordered 
pair (/i, /2) of morphisms f il Ai—>Bi, for i = l , 2, with the evident 
composition. The product of any indexed family of categories is 
similarly defined. 

Each category C determines a dual or opposite category Cop. The 
objects of Cop are the objects of C, while the morphisms/*: B—>A of 
Cop are in one-one correspondence with the morphisms/: A—>B of C, 
but note that the direction is reversed. The composite ƒ*g* = (g/)* 
is defined in Cop exactly when gf is defined in C. Hence the codomain of 
ƒ* is the domain of/, while/* is monic if and only if ƒ is epic, etc. Pas­
sage from C to Cop yields a categorical duality. Alternatively, the 
axioms for categories are self-dual. Hence there is a meta-mathemati-
cal duality: Any demonstrable theorem about categories remains 
demonstrable if the order of composition is reversed. This reversal 
amounts to reversing all arrows, interchanging "domain" with "co-
domain," "monic" with "epic," and "terminal" with "initial." This 
type of duality, cf. [75], has been extensively studied in topological 
cases by Eckmann-Hilton. More recently, there has been an explicit 
formulation of a notion of dual functor (Fuks [35], [36]; Fuks-Svarc 
[37], Mitjagin-Svarc [81 ], Svarc [lOl]), with existence theorems for 
such functors (Linton [711). 

For any category C, the category Morph(C) has as objects the 
morphisms ƒ : A -^>B of C and as morphisms m: ƒ—»ƒ' the pairs m = (a, b) 
of morphisms a: A—>A' and b: B-+B1 of C such that the square 

ƒ: A > > £ 

-i a b 

ƒ': A' > * B' 

commutes. The composition of two such morphisms is evident. (Paste 
the first square on top of the second and erase the junction.) Actually, 



1965) CATEGORICAL ALGEBRA 45 

these squares can be regarded as the morphisms of a different cate­
gory (paste the first square to the left of the second, and erase b) ; the 
squares are thus morphisms of two categories, suggesting Ehres-
mann's extensive investigation of "double catégories" [23]. 

The category Morph(C) is but one example of many similar con­
structions. For instance, one may consider the category whose objects 
are all commutative squares; the morphisms are then evidently quad­
ruples of morphisms of C which form, with the two given squares, 
an appropriately commutative cube. 

For a fixed object A in the category C we may form the category 
C/A of "morphisms with range A." An object in C/A is a morphism 
h:H-*A (for any H)\ xi h and h':H'-^>A are two such objects, a 
morphism ƒ : h—>h' of C/A is a morphism ƒ : H-+H' of C such that 
h'f=h; the composition of morphisms of C/A is evident (that of C). 
This construction has been used extensively by Grothendieck, who 
calls C/A the category of objects above A. 

Similarly, there is a category C/mA whose objects k: K—>A are 
the monies of C with range A. A subobject of A may be defined to 
be an equivalence class of objects in this category (cf. Homology, 
XII , §2). A dual procedure defines quotient objects. Under suitable 
assumptions on the category one may then construct the lattice of 
subobjects (or, dually, of quotient objects) of an object A. In this 
fashion, lattice theory, which started from similar general considera­
tions of algebraic systems, appears as a suitable part of the study of 
categories. 

4. Functors. A functor is a map of categories. More explicitly, a 
(covariant) functor F: B—>C on B to C consists of an object f unction F 
and a mapping function, also written F. The object function assigns 
to each object B of B an object F{B) of C; the mapping function 
assigns to each morphism ƒ : B—>B' of C a morphism F(J) : F{B) 
—*F(B') of B in such a way that 

(1) F(lB) = l , w , F(gf) = (FgXFf), 

the latter whenever the composite gf is defined. The composite of two 
functors G: C-»D and F:B->C is a functor Go F:B->D. Under this 
composition, the functors are the morphisms of a category; more 
exactly, of Cat, the category of all small categories. 

Note some examples of functors. First, let F(S) be the free group 
generated by the set S. Since each function ƒ : 5—>5' can be extended 
to a unique group homomorphism F(J): F(S)—>F(S'), this yields a 
functor F: Ens—>Gr on the category of sets to that of groups. Again, 
the function which assigns to each Lie group its associated Lie alge-
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bra is (the object function of) a functor on the category of Lie groups 
to that of Lie algebras; much of the elementary theory of Lie groups 
can be regarded as the development of properties of this functor. In 
topology, the construction of the fundamental group wi(X) of a space 
X yields a functor ir\\ Top*—»Gr; indeed, since maps of spaces homo-
topic (relative to the base point) induce the same homomorphism on 
the fundamental groups of these spaces, we may regard wi as a functor 
denned on the category Htp* discussed above, in which the mor-
phisms are homotopy classes of continuous maps. Similarly, for n > 1, 
each higher homotopy group yields a functor 7rn: Htp*—»Ab. The co-
homology groups (singular, Cech, or Alexander-Spanier) of a space 
yield functors Hn: Top—>Ab; the homotopy axiom for these cohom­
ology groups states that homotopic maps yield the same group 
homomorphism, and hence each Hn is, in reality, a functor Htp—>Ab. 
The standard axiomatic homology or cohomology theory is a formu­
lation of the properties of these functors, and would hardly have been 
possible without the language of categories and functors. The more 
recent "extraordinary" cohomology theories, such as i£-theory, are 
also instances of functors. 

On any product category C1XC2, there are two u projection" 
functors 

(2) P i : Ci X C2 - • Ci, P 2 : Ci X C2 -» C2 

defined on ordered pairs by P t(Ci, C2) = d and Pt(/ i , /2) =ƒ», for 
i = 1, 2. Moreover, to any pair of functors P<: B—>Ct with a common 
domain category B there is a unique functor G:B—>CiXC2 with 
P i G = Pi and P2G= P2. The product category CiXC2 with its projec­
tions (2) is determined up to isomorphism by this property. (An 
isomorphism of categories C, C' is a functor J: C—>C' whose object 
function and mapping function are both bijections.) 

Given two functors P, G: B—>C, a natural transformation t: F-+G is 
a function / which assigns to each object B of B a morphism t(B): 
F(B)—>G(B) of C in such a way that every morphism/: P—>B' yields 
a commutative diagram 

F(f) 
F(B) >> F{B') 

(3) t(B) t(fi') 

G(f) 
G(B) ^ G(B') 
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If, in addition, each t(B) is invertible in C, call t: F—>G a natural iso­
morphism or a natural equivalence, and write t: F=G. Note that the 
inverses t{B)~~l then constitute a natural t"1: G=F. For example, let 
Abf be the category of all finite abelian groups and 2": Abf—» Abf the 
identity functor. Let D(G) be the character group of the group G; 
then the double character group D{DG) may be regarded as a functor 
D o D: Abf—»Abf; the standard construction of the isomorphism 
t{G) : G=D(DG) of a group to its double character group is a natural 
transformation of I to the functor D o D. On the other hand, there 
is for each group G an isomorphism s(G) : G~DG of G to its character 
group, but this isomorphism depends on a choice of generators in G 
and can not be natural (for example, is not natural as a transforma­
tion s: I-+D, where D is regarded as a functor by restricting the 
morphisms to isomorphisms). A parallel example is the familiar natu­
ral isomorphism of a finite-dimensional vector space to its double 
dual. 

A functor G:Bop—»C is also called a contravariant functor on B to 
C. By definition, it is determined by an object function and a mapping 
function such that always 

(4) G{U) = Um, G(gf) - G(J)G(g); 

the essential observation is that the order of the composition is in­
verted in the second equation. A functor H: AXB—»C is also called a 
(covariant) bifunctor on A, B to C. Such a bifunctor can be deter­
mined by functors of one argument in the following fashion {Homol­
ogy, Proposition 1.8.1). Let FB: k—»C and CA'.B—>C be functors, 
given for each object B in B and each A in A. If always FB{A) = GA(B), 
and if, for each pair of morphisms ƒ: A—*A' and g: B^>B', we have 
the commutativity 

(5) FB,(f)GA(g) = GA,(g)FB(f): FB(A) -> FB,(A'), 

then there is a (unique) bifunctor H with H(A, B) = GA(B) and 
H(f, g) = FB>(f)GA(g). Every bifunctor # : A X B - > C can be so de­
scribed. By the same token if K is a second such bifunctor, a trans­
formation t : H—>K is natural if it is natural in each variable (in A or 
B) separately. Multifunctors with mixed variance can be constructed 
similarly. 

In particular, horn (A, B) for any category C may be regarded as a 
bifunctor. Indeed, morphisms/: A'—^A and g: B-+B' yield "induced" 
maps 

(6) ƒ*: hom(^, B) -> hom(^ / , B), g*: hom(A, B) -» homU, Bf) 
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of sets, defined for h: A —>B as f*(h) = hof and g*(h)=goh. Since 
ƒ*£* = £*ƒ*, as in (5), hom c : CopXC--»Ens is a functor to the category 
of sets, contravariant in the first argument and covariant in the 
second. By fixing the first or the second argument we get two functors 
of a single variable, 

(7) hA: C -* Ens, hA(B) = hom c (^ , B), 

(8) hB: O -> Ens, hB(A) = homc(A, B), 

called, respectively, the covariant and the contravariant homfunctors 
for the category C. 

As Freyd has observed, "category" has been defined in order to be 
able to define "functor" and "functor" has been defined in order to 
be able to define "natural transformation. " Now note that the defini­
tion of a category is so constructed that each function ƒ : X—>A (in 
the category of sets or in some other category) must have, not only 
a definite set X as domain, but also a definite set A as range or co-
domain—and this codomain is by no means the same thing as the 
image of the set X under the function ƒ. For example, let A be a sub­
group of the abelian group B. Take a set of pairs which is the graph 
of a function; that is, a subset PdXXA which contains to each 
x(EX exactly one pair (x, a). Now P determines a function/: X—>A 
and also a function/ ' : X—^B, but we do not follow the once frequent 
practice of identifying these two functions. They must count as differ­
ent functions if we are to have functors. To show this, take a third 
abelian group G and recall the well-known fact that A a subgroup of 
B need not imply that the tensor product A® G is a subgroup of 
B®G—nonzero elements of finite order in A ®G may become zero in 
B®G. If the tensor product is to be a functor, then group homomor-
phisms ƒ: X—±A and ƒ': X—+B must induce, under this functor, cor­
responding group homomorphisms / ® 1 : X®G—>A ®G and / ' ® 1 : 
X®G—>B®G. Were ƒ identified with ƒ', this simply wouldnJt work 
because A®G need not be contained in B®G. The same point is 
more vivid in the case of topological functors : A a subspace of B by 
no means implies that the homology of A is a subgroup of the homol­
ogy of B. More technically, a functor need not carry monies to 
monies. 

5. Operations on functors. If Fii B4—>C», for i = l, 2, are functors, 
their product is the functor 

i ?
1 X i ?

2 : B 1 X B 2 ^ C i X Ci, 

defined on ordered pairs of objects and of morphisms by 
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(Fi X F2)(Bh B2) = (F1(B1), F2(B2))y 

(F1XF2){fhf2) = (F1fhF2f2). 

If til Fi-^Gi are natural transformations, for i = l , 2, their product is 
the natural transformation ^Xfe: FiXF2-*GiXG2 defined on pairs 
of objects by 

(2) (h X h)(Bh B2) = MBO, h{B2)). 

If the U are natural equivalences, so is hXt2. The constructions 
F±XF2 and /1X/2 are, respectively, the object function and the map­
ping function of the bifunctor "product" on the "functor category" CB. 

If B is a small category and C any category, the functor category 
CB has as objects all functors F: B—>C, as morphisms all natural trans­
formations /: F-+F', with the evident composition. For example, 
following the notation of Lawvere, let 2 be the category with exactly 
two objects a and b and three morphisms la, 1&, and h: a—>b. Then 
each functor F: 2—>C is completely determined by the morphism 
FQi) in C. Hence C2 is just another description of the category 
Morph(C), introduced above, whose objects are the morphisms of C. 
Similarly, diagrams on C of any given form may be construed as the 
objects of a suitable functor category (cf. Homology, IX.3). Again, 
complete semi-simplicial complexes are functors on an appropriate 
category to the category of sets, and, hence, are better called simpli-
cial sets (cf. also "simplicial groups"; Homology, VIII.5). Grothen-
dieck [4l] , Freyd [34], Mitchell [80], and others have pointed out 
the advantages in the systematic use of functor categories. The idea 
may be emphasized by calling a natural transformation a morphism 
of functors, but only misguided authors would use the miserable mix­
ture "functor morphism." 

Among the formal operations on functors and natural transforma­
tions are fore and aft substitution. Bénabou (unpublished) has shown 
that these may be conveniently formulated by operations in a certain 
category Nat. The objects of Nat are categories, but a morphism 
t: A—>A' is to be a triple t—{t, F, G), where F and G are functors, 
F, G: A-^A', while t: F-+G is a natural transformation. If t': A'—»A" 
is a second such morphism, the composite, written t' * t: F' o F 
—>G' o G, is that natural transformation with 

(tf * t)(A) = G'(tA) o t'(FA) = t'{GA) o F'(tA), 

where the second equality holds in virtue of the naturality of /'. Each 
functor F: A-^A' determines a special sort of morphism of Nat; 
namely, the identity natural transformation F-+F, which we shall 
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again denote by F. For these special morphisms, F' * F is just F' o F, 
so the *-composition includes ordinary composition of functors. It 
also includes substitution processes; thus F' * t is that natural trans­
formation 

between composite functors which is defined for objects A in A by 
"fore" substitution, as (Ff* t)(A) = F'(tA). Similarly, t'*Fis an "aft" 
substitution. Bénabou now observes that, for fixed A and A', the 
class Nat(A, A') of morphisms of Nat is itself a category (with objects 
the functors F: A—>A'). Fixing A" as well, the composition rule * of 
Nat is a bifunctor 

*: Nat(A', A") X Nat(A, A') ->Nat(A, A"). 

In the appendix of [39], Godement listed five rules for substitution. 
These rules are restatements of the fact that Nat is a category with 
the composition * as a bifunctor. 

6. Products. In C, let {A y} be a family of objects indexed by a set / . 
Consider the category C/{^4y} whose objects are indexed families 
{ƒ,-: B—>Aj\ i £ / } of morphisms of C with a common domain JB, while 
a morphism {ƒƒ}—»{ƒƒ } in C/{^4y} is a morphism h: B—>B' of C for 
which fjh is ƒ/. A terminal object in this category is called a product 
of the Aj] thus a product consists of an object P of C together with 
morphisms pji P—>Aj, for j £ J , such that any family of morphisms 
ƒ/: B—>Aj can be written as ƒ,• = £,/& for a unique morphism h: B—>P. 
In other words, any diagram 

% ^ A 

can be filled in by a unique h (at the dotted arrow) so as to be com­
mutative. The product, like any terminal object, is unique up to 
equivalence (in C/{^4y}); in particular, the product-object P is 
unique up to an equivalence in C. It is suggestive to write the 
product-object as P = YLJ AJ and to call the morphisms p, the projec­
tions of the product. The product of two objects Ai and A2 will be 
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written AJIA2 (it is often written A 1X^2). Note that the very 
definition of the product asserts that {ƒ,}—•& is a bijection of sets: 

(i) H homc(i?, Aj) = homc! (B, n )̂> 

where the symbol JJ,- outside on the left is the cartesian product of 
sets, while J J inside on the right is the categorical product. 

For example, in the category Ens of sets, the cartesian product 
Xl-Sy of the sets Sj, together with its projections on each of the 
factors, is a product in the categorical sense. Similarly, the cartesian 
product of spaces or the direct product of groups, each with its pro­
jections, is a product in the corresponding category. In the category 
Cat of small categories, the product category with its projections as 
in (4.2) is a categorical product. 

Suppose now that any two objects in the category C have a prod­
uct. Then an iterated product AiUiAtllAz), equipped with the evi­
dent projections, is clearly a product. Hence the product is associa­
tive and commutative in the evident sense, and any finite family of 
objects of C has a product. To each pair of objects Ai, A2 of C choose 
a product {pj: AiTlA2—*Aj}. Then, to morphisms fjiAj-^Aj of C, 
there exists a unique morphism h: AJIA2-+A1IL42' with pjh=fjpj for 
7 = 1,2. The definition h =fjlf2 then makes II a functor on C XC to C. 

The dual notion is that of a coproduct of the objects Aji A diagram 
{kjiAj—>S} which is initial in the category of such diagrams. A co-
product in the category of sets is the disjoint union, in the category 
of groups the free product, in the category of pointed topological 
spaces the wedge (the given spaces joined at the base point). If we 
write the coproduct of objects {Aj} as J ply, the definition of the 
coproduct provides a bijection of sets 

(2) I I homc(4y, B) ^ homc(XI Ah B). 

Closely related to the product is the "pull-back" diagram. In a 
category C let there be given two morphisms gr. A—>C and g2: A2-^C 
with a common codomain in C. Consider all completions of these two 
morphisms to a commutative square of the form 

D 
h 

- * • A% 

Pi Zt 

~&* c 



52 SAUNDERS MAC LANE [January 

Holding the data fixed, these squares constitute a category with the 
evident morphisms (morphisms d: D-+D' with pid — pi for i = l, 2). 
A terminal object in this category is called a pull-bach diagram or a 
co-universal square. This construction is a familiar one ; for example, 
if g2: A2—>C is a fibre map of topological spaces or of fibre bundles, 
then p2: D-^A2 is the fibre map "induced" by the given map g2 on 
the base spaces, or the "induced" bundle, as the case may be. (In­
deed, the French translation of "pull-back" is "produit fibre.") In 
most of the familiar categories (sets, spaces, groups) the pull-back 
diagram always exists. 

The dual of the pull-back diagram is called a push-out diagram or a 
universal square. More elaborate "universal" problems are possible, 
but they have apparently not yet been subject to terminological 
organization, gallic or anglo-saxon. 

Given two morphisms ƒ, g : A-+B in a category C, consider the 
new category with objects those morphisms k with codomain A and 
such that fk = gk. A terminal object k in this category is called a 
difference kernel (or an equalizer) of ƒ and g. The dual notion is that 
of a difference cokernel (or co-equalizer). The category C is called com­
plete ("left complete") if every pair of maps in C has a difference 
kernel and every set of objects has a product. If C and C' are both 
left complete categories, a functor F: C—>C' is called (left) continuous 
if it preserves all difference kernels and all products. 

7. Representable functors. The important notion of a representa-
ble functor is due to Grothendieck [42], [43], [44]; for another ex­
position, see Dold [13]. 

Let 5 : C—»Ens be a functor (to the category of sets). A representa­
tion (R, <£) of S is a pair, (R, <£), which consists of an object R of C 
and a family <f> of equivalences 

(1) 0(C): homc(i?, C ) ^ 5(C), 

natural in C. When S has such a representation, it is said to be 
representable, or to be represented by the object R. For each object R 
of C we write %R: C—>Ens for the covariant homfunctor JIR(C) 
= homc(jR, C). A representation (i?, <}>) of S is then a natural equiva­
lence of functors 

(2) <t>:hR£ÉS. 

For example, let N: Gr—>Ens be the functor which assigns to each 
group G its underlying set and to each group homomorphism ƒ the 
same mapping regarded just as a function on the underlying sets (such 
a functor N is called a forgetful functor; it "forgets" the group struc-
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ture). This functor N is representable; indeed, it is represented by 
the additive group Z of integers, for we have the familiar bijection 

homGr(Z, G) S S(G), 

which assigns to each morphism ƒ : Z—»G the image / ( l ) of the gen­
erator 1 of Z. 

For any two objects Ai, A2 in a category C define the functor 
F: C->Ens as 

F(C) = homc(i4i, C) X homc (A2, C). 

If the category C has coproducts, (6.2) shows this functor representa­
ble by the coproduct A\ HA* Again, consider a pair of maps ƒ»: B—>A it 

for i = 1, 2, in a category C. The functor 

F(C) = {(gi, ft) | gn Ai -> C and glf = g2f] 

is represented by the object ^4IILB A2 of the push-out diagram, if the 
latter exists. 

Representable functors may alternatively be described in terms of 
certain "universal" elements. Given S: C—*Ens let Cs* be the cate­
gory with objects those pairs (A, x) for which x<E:S(A)y and with 
morphisms ƒ: (A, x)—*(B, y) those morphisms ƒ: A—>B of C such that 
S{f)x = y. Call this category Cs* the category of S-pointed objects of 
C. Now define a universal point for a functor 5 : C—»Ens to be an 
object (R, u) initial in the category Cs*. 

THEOREM 7.1. For each functor S: C—>Ens, the formulas 

(3) u « (<t>R)lR} (<f>c)h = (Sh)u, 

the latter for any morphism h: R-+C, establish a one-one correspondence 
between representations (R, <l>) of S and universal points (R, u) for S. 

PROOF. First, let (R, <f>) be a representation of S. Since <f> is natural, 
the diagram 

homcCR, R) 

homcCR, O 

commutes for each h: R—*C. Write u for the image of \R under <j>R; 
the commutation now states that (<f>C)h=(Sh)u. Since <j>C is assumed 
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invertible, this asserts that each element of the set SC can be written 
uniquely as {Sh)u for some h\ hence (R, u) is a universal point for 5. 

Conversely, let (R, u) be a universal point for S. Define <j> by 
(<t>C)h=(Sh)u. The universality of u then states that 4>C so defined 
is a bijection homc(-R, C)—>SC of sets. It is clearly natural, hence is 
the required representation of the functor 5. 

For example, in the case of the functor represented by the co-
product above, a universal point of F(C) is the pair of injections 
if. Aj—ÏAIJIAÏ of the factors into the coproduct. 

As in the case of an initial object in any category, a universal point 
for 5 is unique up to an equivalence (of R). Hence we have 

COROLLARY 7.2. If (R, </>) and (R', <f>') are two representations of the 
same functor S, there is an equivalence 0: R—>R' of C such that $0* =<£'. 

COROLLARY 7.3. Let the functors S, S': C—>Ens have representations 
(R, </>) and (R', <£'), respectively. Then to each natural transformation 
t: S—>S' there is a unique morphism p: R'—*R of C such that 

(4) ty = <t>fp*: homc(R, C) -» S'(C). 

PROOF. Let (R> <f>) correspond as in Theorem 7.1 to the universal 
point (R, u). Then (R, (tR)u) is an S*-pointed object of C. Since 
(R', u') is a universal point, there is a unique morphism p\R'—>R 
such that (S'p)u' = (tR)u. By the correspondence (3), this condition 
translates to (4). 

The conclusion of this corollary may also be formulated as a bi­
jection 

Nat(5, 5') ^ homc(£' , R), 

where "Nat" stands for the set of natural transformations from 5 
to S'. 

The argument for Theorem 7.1 rests on the observation that each 
transformation, 

/c:homcCR, C)->S(C), 

natural in C, is completely determined by the image ^(lj?). This is the 

LEMMA 7.4 (YONEDA LEMMA). For each object CGC and each functor 
S: C—»Ens, there is a bijection 

*: 5(C) ÊS Nat(Ac, S). 

The map ^ is defined for xES(C) and fEhc(A) as (&x)f=(Sf)x. 
There is a corresponding result for functors W: CopXC—>Ens. De­

fine a diagonal spread for W to be a function d which assigns to each 
object M an element dM^.W{M, M) such that 
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W(l, k)dM = W(k, l)dN G W(M, N) 

holds for each morphism k: M-+N of C. Then 

LEMMA 7.5 (DIAGONAL YONEDA). For each bifunctor W: Co pXC 
—>Ens, there is a one-one correspondence between natural transforma­
tions t: homc-->W of bifunctors and diagonal spreads dfor W. Given t, 
dM is / ( 1M) ; given d, t(k) is W(l, k)dM-

PROOF. By the previous lemma, t is determined by d. Naturality 
requires for each k: M-+N the commutativity of the diagram 

hom(M, M) —^ hom(M, N) « hom(iV, N) 

[t [t it 

W(M, M) > W(M, N) < W(N, N). 

Putting identities at the ends of the top rows gives 1—>fe<—1 ; hence the 
bottom row is dM-^tk<—dNf as required. 

As another example, let F, G:B—>C be functors, while W:B°*>XB 
—•Ens is the bifunctor given as 

W(A, B) = homc(FA, GB). 

A diagonal spread t for W is, then, a function assigning to each object 
B a morphism t(B): FB-+GB such that, for every / : B-+B', G(J)t{B) 
= t(B')F(t)—in other words, a diagonal spread for this functor is 
exactly the same thing as a natural transformation /: F-^>G. 

Consider now bifunctors T(M, A) which are representable when 
regarded as functors of the second argument A. 

THEOREM 7.6. Let M and A be categories and 

T : M ° P X A - » E n s 

a bifunctor such that for each object M the functor T(M, —) has a 
representation (RM, <}>M)- There is then a unique functor R: M—>A with 
object function R(M)=RM such that the equivalence 

(5) 4>M: homA (RMt A) S T(M, A) 

is natural in M as well as in A. 

Alternatively, if each functor T(M, —) has a universal point 
(i?M, um), there is a unique functor R: M—»A such that u is a diagonal 
spread for the bifunctor T(M, RN). 

PROOF. T O any morphism k: M—>N we must choose a morphism 
Rk: RM—>RN to make <f>M natural; that is, to render commutative the 
diagram 
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homA(Rif, A) 

horn A(RM,A) 

4>N 
W,A) 

k*=T{k,U) 

<t>M • ^ T(M,A). 

Now put in the definitions of </>M and <j>N in terms of the universal 
points (RM, UM) for T(M, —) ; this naturality condition then reduces 
to the special case with A = RN and 1 : RN-^RN the identity. In this 
case the condition reads (Rfy^UM^k*^, as in the diagram, 

(6) UM G T(M, RM) ^—^ T(M, RN) < T(N, RN) 3 uNj 

where (Rk)* is short for T(1M, Rk) and k* for T(ky 1RN). But (RM,UM) 
is a universal point for the functor T(M, — ) , while (RN, k*uN) is 
another "point" for this functor; hence there is a unique morphism 
g: RM-^RN with g*uM = k*uN. Thus the choice R(k) = g is forced; with 
this choice, it is clear that R becomes a functor M—»A as desired. 

The universal points for the functors T(M, —) may also be inter­
preted as "universal maps" in a sense that was first proposed by 
Samuel [89]. For categories M and A let there be given a function 
"map" which assigns to each pair of objects M £ M and A G A a set 
map(ikf, A) of "maps" s from M to A. Assume also that these "maps" 
compose in the usual fashion with morphisms of M or of A, so that 
sGmap(M, A) and ƒ: N-+M or a: A-^B determine s/Gmap(iV, -4) 
and a$Gniap(M, B) with S1M = S = 1AS with all the usual associativ­
ity axioms. Given an object M, an element wGmap(ilf, R) is "uni­
versal" for these data if, to each s G map (ikf, A), there is a unique 
a: R—>A with au = s, as in the diagram 

"maps" 
This fits the previous theory. Indeed, the given data on the sets of 

are exactly what is required to make map(Af, A) a functor 
MopXA—»Ens, while a "universal map" u: M—*R is exactly a uni­
versal point (R, u) for the functor map (if, — ) . 

The "universal maps" include many familiar instances, such as the 
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construction of tensor products. To describe the latter case, let A be 
the category of modules (over some commutative ring), while 
M = A X A . Take map(ikf, A)=ma,p(BXC1 A) to be the set of all bi­
linear maps s:BXC—>A, with the evident composition with mor-
phisms. Then the function (&, c)—*b®c provides a universal map 
<8>:BXC-+B®C. 

In the above discussion, the replacement of C by its opposite will 
yield a description of the representation of contravariant functors 
K: Cop—>Ens. In detail, a corepresentation of K is a pair (R, \f/)f where 
R is an object of C and \[/(C) a, family of equivalences 

(7) *(C):homc(C,R)Ç*K(C) 

natural in C; in other words, x// is a natural equivalence \p\ hR=K, 
where hR(C) =hom(C, R) is the contravariant hom functor. Now 
take a K-copointed object of C to be a pair {A, x) with A an object of 
C and xÇ:K(A), while a morphism/: {A, x)-*{By y) of such objects 
is a morphism/: A-+B of C with K(f)y = x. A co-universal copoint for 
the functor K is then defined as a terminal object (R, v) in the 
category of üT-copointed objects of C. The formulas 

(8) v = (**)1*, *g = (Kg)v, for g: C -» R, 

provide a one-one correspondence between corepresentations (i?, \p) 
of K and co-universal copoints (R, v) for K. 

8. Adjoints. We now present a basic idea due to Kan. For sets 
5, T, and U, the familiar process of writing a function h: SXT-+U 
of two variables as a function <l>h of one variable (in 5) whose values 
are functions of a second variable (in T) yields a one-one corre­
spondence 

<t>\ hom(5 X T, U) ^ hom(5, hom(r, 17)). 

This may be regarded as a natural equivalence; indeed, hold T fixed 
and define functors F, G: Ens->Ens by F(S) = SXT and G(U) 
= hom(jH, Z7). Then the correspondence <j> takes the form 

4>8.u: hom(F(5), J7) S hom(5, G(f/)); 

each side is a functor EnsopXEns—>Ens, and <j> is natural (in the argu­
ments S and £/). This formula is reminiscent of the familiar formula 
(T*/, g) — (ƒ, Tg) describing the adjoint T* of a linear transforma­
tion T. 

In general, consider any two categories A and M and functors 

(i) F : M - * A , G : A - > M . 



58 SAUNDERS MAC LANE [January 

DEFINITION. An adjunction <f> of F to G is a natural equivalence 

(2) 4> = <1>M,A:homA (FM, .4) ÊË homM (M, G^), 

ilf G M , A £ A ("natural" means that each side is regarded as a functor 
MopXA—>Ens). If there exists such an adjunction call F an adjoint 
of G or G a coadjoint of F. (Earlier terminology had F a "left adjoint" 
of G and G a "right adjoint" of F.) 

For each M, the adjunction isomorphism (2) states that the functor 
on the right of (2) is representable ; indeed, representable by the pair 
(FM, <1>M)' NOW hom(M, GA), as a functor of A1 is the composite 
functor hM o G, and we know that representable functors may be de­
scribed in terms of universal points. In the present case, a "point" is 
a map ƒ: M—>GA, and we shall speak of universal "junctions," to 
suggest "adjunction." 

DEFINITION. A universal junction for a functor G: A—>M is a func­
tion u which assigns to each object M an initial QIM O G)-pointed ob­
ject (FM, UM) of A. 

An (hu o G)-pointed object of A is a pair (A, ƒ) where ƒ: M—>GA. 
The condition that uM be initial may be restated thus: Given any 
morphism ƒ: M-^GA of M, the diagram 

UM 
FM 

V 
A in A, 

can be filled in uniquely with a morphism a of A so as to be com­
mutative. 

Given a universal junction u for G, the alternative form of Theo­
rem 7.6 states that there is a unique functor F: M—>A with object 
function FM and with u a diagonal spread for homM(lf, G FN). This 
last condition means exactly that u is a natural transformation 

u:I->GF, 

where I is the identity functor of M. If both functors F and G are 
given in advance, we call u a universal G-F junction (in a previous 
version of this paper, a "front adjunction" of F to G). With this 
terminology, the arguments indicated above give 

THEOREM 8.1 ( K A N ) . Given functors F and G as in (1), the formulas 
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(4) uM = 4>{UM), <t>(a) = G(a)uM, 

the latter f or any a: FM—*A in A, establish a one-one correspondence 
between adjunctions of F to G and universal G-F-junctions. 

COROLLARY 8.2. Any two adjoints F and F' of G: A—»M are natu­
rally équivalent. 

Explicitly, if u: I-+GF and u'\ I-^GF1 are front adjunctions, there 
is a natural equivalence 6: F—*F' such that UM = G(6M)UM for all M 
in M. Equivalently, if <f> is an adjunction of F to G and <f>' one of F' 
to G, then there is a natural equivalence 0: F—>F' such that $ ' is the 
composite 

hom(F'M, A) > homOFM, A) — > hom(M, G4) . 

Theorem 7.6 also allows us to dispense with the assumption that 
F i s a functor: 

PROPOSITION 8.3. A functor G: A—>M has an adjoint if and only if, 
for each object M, the functor hom^M, G A) is representable (as a func­
tor of A). If (FM, <J>M) is a representation of this functor, then F is the 
object function of an adjoint, and 4>M is the corresponding adjunction. 

Equivalently, G has an adjoint if and only if it has a universal 
junction u. 

There is a dual treatment. Let <j> be an adjunction, as in (2). For 
each object A, (hA o F)(M) = homA(FM, A) is then corepresentable 
as a functor of M. This corepresentation corresponds to a co-univer­
sal copoint (GA, UA) in the category of suitably copointed objects of 
M. Explicitly, for given A, this is the category whose objects are pairs 
(M, ]8: FM-+A), for M an object of M and /3 a morphism of A. Thus 
we define a co-univeral junction for F to be a function /JL which assigns 
to each object A a terminal hA o F-copointed object (GA, fiA» FGA—*A) 
of A. Then the formulas 

(5) HA = 4T1(UA), ^(f) =MiO (Ff), 

the latter for any ƒ : M-+GA, establish a one-one correspondence be­
tween adjunctions <j> of F to G and co-universal junctions /x. Given 
the functor F, a coadjoint, if it exists, is uniquely determined up to 
natural equivalence, much as in Corollary 8.2. As before, 

PROPOSITION 8.4. A functor F: M-*A has a coadjoint if and only if, 
for each object A, the functor hom&(FM, A) is corepresentable as a 
functor of M. Also, F has a coadjoint if and only if f or each object A 
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there is a terminal object in the category of all (hA o F)-copointed objects 
of M. 

The existence of an adjunction may also be described in terms of 
the transformations u and /z. 

PROPOSITION 8.5. The functor F: M—>A is adjoint to G: A—>M if 
and only if there are natural transformations u: I^-^GF and /*: FG-+I& 
such that 

(6) G(JJLA)U0A = IGA and VFMF(UM) = W 

for all objects A of A and M of M. 

PROOF. First recall that an adjunction <j> gives u and p in the fol­
lowing symmetric fashion. To obtain % , set A = FM in (2) and apply 
<j> to 1FM\ to obtain fjLAf set M=GA and apply $~x to IGA* NOW 

/iA=<^~"1(lö^) becomes 1QA=4>(JJ>A)\ with the formula (4) for <f>, this 
gives the first equation displayed above ; the derivation of the second 
equation is symmetric. 

Conversely, given natural transformations u and ju, we define maps 

homA(FM, A) <=± homM(ikf, G A) 

as <t>(a) = G(a)uM for a: FM->A and $(j) = PAF(J) for ƒ : M->GA. 
Then 

# ( ƒ ) = G(nA)GF(f)uM = G(nA)u6Af = ƒ, 

since G is a functor and w is natural. Hence </>\[/ is the identity. Dually, 
\l/<f>=l. Therefore <j> is invertible; it follows readily that it is natural. 

Examples of adjoints are myriad. In general topology there are 
many, such as the Stone-Cech compactification (cf. Kennison [62]). 

In some instances, the front adjunction provides the most con­
venient way of recognition. For example, to discuss the free-group 
functor in the notation of this section, let A stand for the category of 
groups and M for that of sets while G: A—»M is the forgetful functor 
(§7). Now let F be the functor which assigns to each set M the free 
group on the elements of the set M as generators ; while uM : M-+GFM 
is the function which sends each element of M into the same element 
(in the underlying set of the generated group). The basic construc­
tion of the free group on given generators shows that each homo-
morphism a: FM-+A of the free group into any other group is com­
pletely determined by the induced map ƒ of the set M of generators 
into (the set of) A, and, conversely, that every such set map ƒ extends 
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to a group homomorphism. Now these statements say exactly that 
diagram (3) can be uniquely filled in at a, hence that Fis the adjoint 
of G. 

This example is typical of many: Given an algebraic system M of 
some type M, the generation from M of a relatively free system F(M) 
of some other more complicated type A is just the construction of an 
adjoint to the natural forgetful functor from A to M. For example, 
let A be the category of rings (always with identity). If we "forget" 
the addition, we have a functor G: A—»M, where M is the category 
of monoids (sets with an associative binary operation with an identity). 
The adjoint F(M) assigns to each M its monoid ring Z(M) ; in par­
ticular, if II is a group, the ring Z(U) is the usual group ring over the 
integers (Homology, IV. 1 and X.5). 

Let T be the functor which assigns to any group G its factor com­
mutator group TG. Then any homomorphism from G to an abelian 
group A factors uniquely through the evident map G—+TG. This gives 
a bijection 

Ab(TG, A) ÊË Gr(G, NA), 

which asserts that T is adjoint to the forgetful functor N from abelian 
groups to groups. 

In the category Mod of modules A, B, C, • • • over a commuta­
tive ring, it is a familiar fact that a bilinear function ƒ: AXB—>C 
on AXB can be interpreted as a linear function on A to the linear 
functions on B to C; in other words, there is a natural equivalence 

hom(A ® B, C) S hom(^, hom(£, C)). 

For B fixed, this asserts that the functor — ® B is adjoint to 
homCB, —). 

Similarly, for topological spaces X, F, and Z, with the usual com­
pact-open topology on the space ZY of continuous functions on F 
to Z there is, for Y regular and locally compact, a bijection 

hom(X X Y,Z)9É hom(Z, ZY); 

thus, for the category Top, — X F is adjoint to (—)F. In the category 
Top* of pointed spaces, ZY will denote the function space of all base-
point preserving continuous maps of F to Z, again with the compact-
open topology. On the other hand, the smash product of X and F is 

X A F = (X X F)/((*x X F ) U ( I X *r)) 

(the cartesian product with the wedge of X and F collapsed to a 
point). The above exponential law in this case becomes a bijection 
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hom(X A F, Z) S hom(X, ZY); 

— A Y: Top*—»Top* is adjoint to the functor (—)F. In particular, 
take Y to be the circle S1. Then X AS1 is the suspension of X, while 
Z 5 is the loop space: In Top*, the suspension functor is adjoint to 
the loop-space functor. 

Swan's notes [103] illustrate the many occurrences of adjoints in 
the theory of sheaves. For example, the functor which assigns to each 
presheaf (of abelian groups over a space X) its associated sheaf is 
adjoint to the forgetful functor from sheaves to presheaves. 

The notions of direct and inverse limits may be described effec­
tively in terms of adjoints, following Kan [58]. Thus consider a di­
rected set D\ that is, a partly ordered set in which there exists to each 
pair of elements di, d2 an element d with both di^d and d2^d. Take D 
to be the category corresponding to the partly ordered set D, in the 
sense described above in §2. A directed system of abelian groups over 
the index set D is then the same thing as a functor T: D—>Ab, for such 
a T assigns to each index d<ED an abelian group F id) and to each 
pair of indices d\^d2 a. morphism T(di)—^T(d2) of abelian groups, 
with the evident composition rule. For each abelian group A there 
is a constant directed system NA, denned by taking (NA)d = A for 
each index d while each morphism iNA)di—^{NA)d2 is 1^. Thus N is a 
functor N: Ab—»AbD. Now suppose that this functor has an adjoint 
L: AbD—>Ab, as in 

0: homAb(£7\ A) S£ Nat(7\ NA). 

Thus L assigns to each directed system T of abelian groups a "limit 
group" LT, while the universal junction uT: T—>NLT is a map of 
directed systems, that is, maps each Tid) into Lit) so that each 
diagram 

T(di) ^ r(*) 

T 
LT 

commutes. Moreover, u is universal. This is exactly the description 
of the direct limit LT of the directed system. Inverse limits (of 
groups, spaces, etc.) may be handled in dual fashion. Both these types 
of limits apply to functors T: D—>Ab, where D is the category belong-
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ing to some directed set. The same definitions apply for a functor 
T: E—>Ab on any small category E; the notions corresponding to in­
verse and direct limits in the more general case are called left and 
right roots by Freyd [34]. If E is small and C left complete, any 
T: E—»C has a left root ( = an inverse limit). 

Freyd [34] and also Lawvere [66] give a standard theorem on the 
existence of an adjoint. Suppose that the categories A and M are 
both left and right complete, in the sense described in §6. Then a 
functor G: A—>M has an adjoint if and only if G commutes with all 
equalizers and all products and, moreover, there exists to every 
object M a set U(M) of (hM o G)-pointed objects (A,f) of A with the 
following property: Given any (hM o G)-pointed object (B, g) of A, 
there exists an object (A, ƒ) in the set U(M) together with a morphism 
(Af)—>(B, g) of pointed objects. This last "set-theoretic" condition 
is clearly necessary if there is to be a front adjunction for G. This 
"adjoint functor theorem" applies to many different categories— 
and in many of these categories has been rediscovered in more special 
form. 

"Universality" is frequently useful even without formal employ­
ment of adjoints. Thus cohomology operations are defined as natural 
transformations, and have universal models K(Hf n). Also Higgins 
[46] has shown that systematic use of universality gives a proof of 
the Kuros subgroup theorem without the usual complicated cancel­
lation arguments. 

CHAPTER II. ADDITIVE STRUCTURES ON CATEGORIES 

9. Kernels and cokernels. A null object in the category C is an 
object which is both initial and terminal in C; in other words, N is a 
null object if each set hom(iV, C) and each hom(C, N) contain 
exactly one morphism. Any two null objects of C are therefore equiva­
lent. If the category C contains a null object, then for each pair of 
objects A and B there is exactly one morphism 0#: A—>N—»J5; it is 
called the zero morphism from A to B and may be described as the 
unique morphism with domain A and codomain B which "factors 
through" the null object N. Moreover, this morphism 0 = 0^ is inde­
pendent of the choice of a null object of C. Furthermore, any com­
posite with one factor a zero morphism is itself zero. 

If C has a null object, the notion of "kernel" for any morphism 
ƒ: A—*B can be defined: A kernel is any morphism k: K-^A with co-
domain A such that : 

(i) The composite fk = 0 (i.e., = 0 f ) ; 
(ii) If fh = 0, then h — kg for a unique g. 
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This second property states that any commutative diagram of the 
form 

can be filled in uniquely at the dotted arrow g; in other words, each 
right annihilator of ƒ factors uniquely through the kernel k. Hence a 
kernel of ƒ, if it exists, is necessively monic. A kernel of ƒ can also be 
described as a terminal object in a suitable category; namely, in the 
category N/ whose objects are the morphisms h: H-^A with codomain 
A such that fh = 0 and whose morphisms g:h-*hf are those mor­
phisms g: H—>H' of C such that h'g = k. As always for terminal 
objects, any two kernels of ƒ are equivalent; we write k = kerf for 
any one of the kernels of ƒ. The equivalence class of the kernel k may 
be regarded as a subobject (§3) of the domain A of/. The equivalence 
class of the domain K of the kernel k is also unique, and might be 
called the "object-kernel," as this corresponds to the ordinary usage 
of the word "kernel," say in the category Gr. 

A kernel of ƒ may also be described as a difference kernel of ƒ : A —*B 
a n d 0 : , 4 - > £ . 

Dually, construct from each/ : A—>B the category/N whose objects 
u: B—>L are the morphisms of C with domain B and with w/=0 and 
whose morphisms g: u—*u' are the morphisms g: L—*U of C with 
gu = u'. A cokernel of ƒ is an initial object in this category /N; that is, 
a cokernel t of ƒ is a morphism t: B-+M with tf=0 such that every 
left annihilator of ƒ factors uniquely through t: 

If it exists, the cokernel is epic in C and is unique up to equivalence 
( in ,N). 

For example, in the category of groups, a cokernel of ƒ : G—*G is 
the canonical projection p: G'—>G'/N of G' onto the quotient group 
by the normal subgroup N of Gf generated by the image f(G). In 
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the category Ens* of pointed sets, each morphism ƒ has a kernel and 
a cokernel : 

k ƒ t 
K-*P^Q-*M. 

For the kernel, take K=f~1(*Q) and k the injection; for the cokernel, 
form M from Q by identifying with the base point all points of the 
image/(P) , and take t to be the projection. If ƒ is monic in Ens*, it is 
a kernel, and ƒ=ker(coker / ) . The dual statement is false because an 
epic need not be a cokernel, but if t is the cokernel of any map, then 
£ = coker(ker t). 

10. Additive categories. An additive category is a category A in 
which each set horn (A, B) of morphisms has the structure of an 
abelian group, subject to the following three axioms: 

(Add-1) Composition is distributive; that is, 

(1) (gi + g*)f = gif + g2f, Kg! + g2) = hgi + hg2 

for any gu g2: B—*C, ƒ: A—>B> and h: C—>D\ 
(Add-2) There is a null object N; 
(Add-3) (Biproducts) To each pair of objects Ai and A2 there exists 

an object B and four morphisms 

(2) AXQBUA* 
i\ H 

which satisfy the identities 

(3) p\i\ = 1A17 p2i2 = 1A2, iipi + i2p2 = Is . 

First some comments. Since each set homA(^4, B) of morphisms is 
an additive group, there is at least one morphism (the zero of this 
group) from any A to any B. By the distributive law, these zero mor­
phisms satisfy 0 / = 0 and A0 = 0. Hence a null object N of A may be 
described as any object N of A such that homA(iV, N) is the zero 
group, or as any object N such that 1# is zero. We often write 0 for 
a null object. Moreover, a zero morphism 0^: A-+B in the sense de­
scribed in §9 above is identical with the zero element of the group 
homAC4, B). 

The distributive law shows that a morphism k in an additive cate­
gory is monic if and only if kf=0 always implies ƒ = 0 . Similarly, / is 
epic if and only if gt = 0 always implies g = 0. 

The diagram (2) has the following properties {Homology, IX. 1). 
First p\i2 = 0 and p2ii = Q. If ƒ,•: C—*Aj, j = l, 2, is any pair of mor­
phisms with a common domain C, the correspondence (fu f2) —*g, 
where g = iifi+i2f2: C—*B, provides an isomorphism 

hom(C, Ai)@ hom(C, A2) S hom(C, B); 
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here © designates the direct sum of abelian groups. Since pjg=fj for 
7 = 1, 2, the diagram Ai<r-B—*A2 is a product of Ai and A2. Similarly, 
for hji Aj—>D, the correspondence (hi, h2)—>m, where m = hipi-\-h2p2, 
defines an isomorphism 

hom(Ah D) 0 hom(42 , D) ^ hom(J5, D) 

of abelian groups with mij=fjy so Ai—>B<—A2 is a coproduct. Hence 
we call the diagram (2) a byproduct of ^4i and A2, with projections py 
and injections ij\ given yli and A2l it is unique up to an equivalence 
of B (that is, up to an equivalence in the category of diagrams of the 
form (2) with fixed ends Ai and A2). We write B as Ax®A2. Iteration 
yields biproducts Ai® • • • ®An= X ^ » of any finite number of 
factors. In particular, an additive category has finite products and 
finite coproducts. Iteration of the isomorphisms above yields a natu­
ral isomorphism 

( n m \ n,m 

Z Ai, E Q = Z homCil,, Q). 
1 i / »,y=i 

This states that each ƒ: 53-4»-*X/Q is determined by the nXm 
matrix of its components j'»,•: A »—>Cy; composition is then given by 
the usual matrix product. Put differently, the system of equations 
(1) allows a clean and efficient derivation of the usual correspondence 
between linear transformations and matrices. 

If A and B are additive categories, a functor F: A—>B is called 
additive if F(fi+f2) = F(fi) + F(f2) whenever fi+f2 is defined. It fol­
lows that F (0 )=0 , F(-f)=-F(f), and F(Ai®A2)Ç±F(Ai)@F(A2). 
For additive categories all functors considered should normally be 
additive, since a map F: A—»B should preserve all the structure in­
volved; in particular, the addition. A composite of additive functors 
is clearly additive. A functor F is additive if and only if it carries 
every biproduct diagram (2) with properties (3) in A into a biproduct 
diagram in B. 

A typical example of an additive category is the category Ab of 
all abelian groups, with the usual homomorphisms, and with the 
sum of two homomorphisms fi,f2: A—>B defined as (fi+f2)a=fia+f2a 
for all elements a of the abelian group A. Similarly, for each ring R 
the category i^-Mod of all left i£-modules is additive, when the sum 
of two -R-module homomorphisms is defined as for abelian groups. In 
particular, the category of vector spaces over a given field is additive. 
All these categories have additional properties which make them 
abelian categories in the sense next to be described. Homological alge­
bra is usually carried out for i?-modules, though the ideas work 
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equally well for bimodules, for sheaves over a topological space, or, 
more generally, for the objects of any abelian category. 

11. Abelian categories. An abelian category A is an additive cate­
gory which satisfies the following three additional axioms: 

(Abel-1) Every morphism of A has a kernel and a cokernel; 
(Abel-2) For k monic and t epic, k is a kernel of / if and only if / 

is a cokernel of k ; 
(Abel-3) Every morphism ƒ of A can be written as a composite 

f=mo s with m monic and 5 epic. 
A short exact sequence 

0 k t 0 
(1) 0-+A-+B-+C->0 

is, by definition, a pair (k, t) of morphisms with codomain k = domain 
t such that k is a kernel of t and / a cokernel of fe; in particular, k is 
monic and t is epic. By (Abel-2), it suffices to require that k = ker(f) 
and / is epic, or that / = coker(&) and k monic. Given any morphism 
f:A—>B, take the standard factorization ƒ =ms as in (Abel-3) and 
set è = k e r / = k e r s, / = coker /=coker m. There results an "analysis" 
of ƒ in the form of a commutative diagram 

k s 
D ^ A > - / 

^ ^ ^ m 

(2) B 

I' 
Q 

with row and column short exact sequences. This analysis is unique 
up to equivalence in the category of such diagrams on / , that is, up to 
equivalence in A of the three objects D, Jt and Q. In the familiar 
cases, the middle object J(ZB is the image f (A) of/; hence we call 
the monic m the image of ƒ ; it is unique up to an equivalence of its 
domain. Alternatively, / may be regarded as a quotient of the do­
main A, so we call s the coimage of ƒ—unique up to an equivalence 
of its codomain. 

The usual definition of exactness works without elements. Indeed, 
a pair of morphisms A—^B—>°C with domain g = codomain ƒ is said 
to be exact a t B if and only if it satisfies one (and hence all) of the 
following equivalent conditions: 

k = kerf} 

s = coim/, 

m = im/, 

t = coker/, 
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(i) i m / = k e r g ; 
(ii) coim g = coker ƒ ; 
(iii) gf=Q; moreover, whenever gk = 0 and hf=0, then hk = Q. 

For example, since im /=ke r (coke r / ) , the condition (i) amounts to 
requiring that g and coker ƒ have the same right annihilators ; in (iii), 
gf=0 implies that every right annihilator of coker / is a right anni-
hilator of g, while the second condition of (iii) gives the reverse im­
plication. 

A longer sequence of morphisms is exact if it is exact at each inter­
mediate object; in particular, the sequence (1) is short exact if and 
only if it is exact at A, a t J3, and at C. Any long exact sequence may 
be factored into short exact sequences, such as the diagonal sequences 
in the following commutative diagram. 

L 

(3) A S~^yX ^ ~ ^ C \ i ~ ^ D 

K M 

This factorization is the basis of Yoneda's representation of the 
functor Extn(D, -4) by congruence classes of long exact sequences 
from A to D (Homology, III.5 and XII.5). 

Given only a diagram like (10.2) which is simultaneously a product 
and a coproduct in a category A, one can introduce diagonal and co-
diagonal morphisms A—+AXA-+A and hence (cf. [75]) define an 
addition of coterminal morphisms of A. Using related devices, Freyd 
[34] shows that a category A is abelian if and only if it satisfies the 
following four axioms: (Add-2), (Abel-1), and 

(iii) Every pair of objects has a product and a coproduct; 
(iv) Every monic is a kernel and every epic a cokernel. 
We often write k: A*—rB for a monic and i: B—»C for an epic. 

Each biproduct diagram (10.2) yields a short exact sequence 
Ai»—>{1B—»P*A2 with a right inverse ii for p2 and a left inverse pi 
for ii. Any short exact sequence equivalent to such a biproduct se­
quence is said to be split. One shows readily that a short exact 
sequence A*—*hB—»*C is split if and only if t has a right inverse, or, 
if and only if k has a left inverse. Moreover, in an abelian category, 
each pair of morphisms with common codomain has a pull-back. 

The product of two additive (or abelian) categories is additive (or 
abelian), and the opposite of an additive (or abelian) category is 
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additive (or abelian, as the case may be). If B is any small category 
and A an abelian category, Grothendieck observed that the functor 
category AB, as defined in §5, is also an abelian category. Indeed, 
kernels, cokernels, images, and the like can be defined "termwise" in 
AB; for instance, a sequence F^>G-*H of natural transformations of 
functors in AB is exact there if and only if every sequence F{B)—>G{B) 
—*H{B) is exact in A. Thus, for example, the category with objects 
the morphisms of A is an abelian category, as is the category of long 
sequences of morphisms of A. However, the category of short exact 
sequences of an abelian category is not abelian. 

12. Additive functors. Consider an additive functor F: A—>B be­
tween abelian categories. We define 

F is cokernel preserving (or, right exact) if coker {Ff) = F(coker ƒ) for 
every/; 

F is kernel preserving (or, left exact) if ker (Ff) = FÇkerf) for every/ ; 
F is exact if it is both left and right exact. 

A sequence L— î?—»'C—>0 is called a (short) right exact sequence if it 
is exact at both B and C; that is, if / = coker ƒ. Similarly, a left exact 
sequence O-^A—^B—^D is a sequence exact at A and B. Consequently, 
a functor F is right exact if and only if it carries right exact sequences 
in A into right exact sequences in B. Dually, F is left exact if and 
only if it preserves left exact sequences. For that matter, F is left exact 
if and only if it carries short exact sequences into left exact sequences, 
and dually {Homology, Lemma XII.7.1). A functor F is exact if and 
only if it carries short exact sequences into short exact sequences. An 
exact functor also satisfies 

F(im/) = im(F/), F(coim/) = coim(F/). 

In any abelian category A, the groups honiAG4, B) provide exam­
ples of left exact functors to the category Ab of abelian groups. In­
deed, for a n y / : A—>A', the induced maps 

ƒ*: hom(,4', B) -> hom(^, £ ) , ƒ*: hom(C, A) -> hom(C, A'), 

defined by composition as in (3.6), are homomorphisms of abelian 
groups. Hence horn {A, B) is additive in each argument. 

PROPOSITION 12.1. A sequence O-^A—^B-^D is left exact in A if 
and only if the sequence 

k* f* 
(1) 0 -> hom(F, A) -> hom(E, B) U hom(£, D) 

is a left exact sequence of abelian groups for every object E of A. Simi-
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larly, a sequence L-^B—>*C—»0 is right exact in A if and only if every 
sequence 

t* ƒ* 
(2) 0 -» hom(C, E) -* hom(£, E) -> hom(I, E) 

is a left exact sequence of abelian groups. 

In other words, horn (^4, Af), as a functor of A', preserves kernels, 
while as a (contravariant) functor of A it takes cokernels to kernels. 
It is customary to summarize these properties in the statement that 
horn is a left exact functor in each argument separately. 

PROOF. The first given sequence is left exact if and only if each 
g: E-+B with fg = 0 factors uniquely as g = kg'; that is, if and only if 
/*g = 0 implies g = k*g' for a unique g'; that is, if and only if (1) is left 
exact. The proof of (2) is similar. 

Note that a morphism ƒ: A—*A' is monic in A if and only if the 
induced ƒ*: hom(C, A)—*hom(C, A') is a monomorphism in Ab for 
every object C, while ƒ is epic in A if and only if every induced m a p / * 
is a monomorphism. 

Each functor F: A—»B determines for each pair of objects A, A' of 
A a map of sets 

F,! ,^: homA(^t, A') -> homB(/M, FA')f 

namely, the map which assigns to each ƒ: A—*A' the corresponding 
F(f). The functor F is called full if every such map FA,A> is a surjec-
tion, and faithful (or an embedding functor) if every such map FAtAf 

is an injection. Thus, for F, A, and B additive, the functor F is faith­
ful if and only if F(f)=0 implies ƒ = 0 for every/ . For abelian cate­
gories, our third description of an exact pair of morphisms shows that 
a faithful functor carries nonexact sequences to nonexact sequences. 

The Lubkin-Heron-Freyd representation theorem asserts that for 
each small abelian category A there is an exact and faithful functor 
F: A—>Ab to the category of abelian groups. A faithful functor carries 
nonexact sequences to nonexact sequences, so the image under F of a 
sequence in A will be exact in Ab if and only if the original is exact in 
A. Hence this theorem may be used to transfer diagram lemmas, such 
as the Five Lemma or the 3X3 Lemma, from the category of abelian 
groups (where they are easily established by chasing elements) to an 
arbitrary small abelian category. To include also those diagram 
lemmas which assert the existence of maps (notably the construction 
of the connecting homomorphism, say, via the Ker-Coker sequence) 
one needs the more powerful Freyd-Mitchell full embedding theorem 
(see [34], [80]). This theorem constructs to each small abelian cate­
gory A a ring R and an exact, faithful, and full functor F: A—>i£-Mod 
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to the category of i£-modules. Since F is full, any homomorphism 
constructed between J?-modules F(A) and F(A') (say, a connecting 
homomorphism) can be carried back to a morphism A-+A' which will 
be unique, because F is faithful. 

13. Additive adjoints. We now reconsider adjoint functors for the 
case of additive categories A and M. 

THEOREM 13.1. If G: A—»M is an additive functor between additive 
categories, while <£ is an adjunction of a functor F: M—>A to G, then, for 
each pair of objects M and A, 

0: homA(FM, A) £É homM(M, GA) 

is an isomorphism of abelian groups. Moreover, F is additive and right 
exact, while G is left exact. 

PROOF. By Theorem 8.1 we may write 0(a) as G(a)uu. For a, /3: 
FM—>A, the additivity of G gives 

*(« + P) = G(a + P)uM = [G(a) + G(j3)]uM = G(a)uM + G(j3)uM 

= *(a) + *C9). 

Therefore 0 is a homomorphism of abelian groups. Next take 
ƒ, g: M—>N in M. Since u: I—>GF is natural, 

[GF(J + g)]uM = uN(f + g) = uNf + uNg. 

On the other hand, since G is additive, 

G[F(f) + F(g)]uM = [GF(f) + GF(g)]uM = GF(f)uM + GF(g)uM 

= UNf + UNg» 

The identity of these two results and the universal property of % 
show that F(f+g) = F(f) + F(g). Hence F is additive. 

Now consider a right exact sequence L—^M—>lN—»0 in M and 
the corresponding sequence 

F(J) F(t) 
(1) F(L) - ^ i F{M) — ^ F(N) > 0 

in A. Apply the functor horn to get the commutative diagram 

Fit)* F(f)* 
hornA(FN, B) ll > . homA(FM, B) — u ; > • homA(FZ, B) 

homM(N, GB) ^ homM(M, GB) > • homM(X, GB). 
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By assumption and the left exactness of horn, the bottom row is left 
exact. Since each <j> is an isomorphism, the two rows are isomorphic, 
hence the top row is also left exact. Therefore, by (2) of Proposition 
12.1, the sequence (1) is right exact, and so is F. The proof that G is 
left exact is similar. 

14. Differential graded objects. Abelian categories are useful be­
cause, for many purposes, "module" may be replaced by "object of 
an abelian category." This point will now be illustrated in the case of 
the standard construction of homology groups. Now homology groups 
are typically calculated from "chain complexes" ; a chain complex X 
has for each degree n a module Xn of "chains" of degree n and a 
boundary homomorphism d: Xn—>Xn-i with d2 = 0. Thus a chain com­
plex is graded (by degrees n) and has a differential d—in brief, is a 
DG-module. Similarly, we have DG-whatnots, with "whatnots" mean­
ing "objects of an abelian category." 

Let A be any abelian category. A graded object for A is by definition 
an indexed sequence X0, Xi, X2, • • • of objects of A. Such a sequence 
may also be described as a functor X: N—»A, where N is the category 
with objects all natural numbers 0, 1, 2, • • • and with no morphisms 
(except the identities). This description of a graded object as a functor 
automatically tells us that a map ƒ: X—>F of graded objects is a 
natural transformation of functors; that is, an indexed family 
{/n: Xn—>yw|» = 0, 1, • • • } of morphisms of A. Moreover, it also 
tells us that the class G (A) of all graded objects for A is an abelian 
category. 

If X and Y are graded objects, a morphism ƒ: X—>Y of degree k is 
a family {/n: Xn-

j>Yn+k\n = 0, 1, • • • } of morphisms of A (set 
Fm = 0 if m<0). The graded objects with these morphisms again form 
a category, larger than G(A). It is not quite an abelian category 
(coterminal morphisms of different degrees cannot be added, and 
there is an ambiguity about the degree of the kernel of a morphism) ; 
however, it makes sense to talk of exact sequences in this category. 

Again, let A be any abelian category. A DG-object for A is a dia­
gram 

d\ di dz 
Xo <— Xi <— X% <— Xz <— • • • 

in A with dndn+i = 0. (We often set d0 — 0: X0—»0 and write d instead 
of dn.) A map f: X-+X' of DG-objects is a map of diagrams; that is, 
a family of maps {fn: Xn-+Xn | w = 0, 1, 2, • • • } of A such that 
dnfn^fn-idn for every n. With these maps as morphisms, and the 
evident composition of maps, the DG-objects for A form an abelian 
category DG(A); for example, a sequence of maps X-+Y-+Z is exact 
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in DG(A) precisely when every sequence Xn—»Fn—>Zn is exact in A. 
Again, DG(A) can be described as a functor category. Take L to be 
the category with objects all natural numbers and with groups of 
morphisms 

hom(w, n) = t h e infinite cyclic group generated by lm if m = n; 

= the infinite cyclic group generated by dn+i if m = n + lf 

= 0 otherwise ( m ^ w + 1 , n). 

Then an additive functor L—»A is just a DG-object for A. 
Observe the inclusion of (abelian) categories 

(1) A C G ( A ) C D G ( A ) 

where each object A is interpreted as a graded object with An = 0 for 
«7^0 and Ao = Ay while each graded object is interpreted as a DG-
object with zero differential. 

For example, let A be the category of abelian groups. Then a DG-
object for A is just a chain complex X of abelian groups, while a DG-
map is a chain transformation. To get the homology of X, first take 
the kernel Cn of dn: Xn—>Xn_i. Since dd — 0, CnC.dXn+i; the nth 
homology group is defined as the quotient Hn(X) = Cn/dXn+i—in 
geometric language, as cycles modulo boundaries. 

This can be done for any A. In the DG-object X, let kn: Cn—>Xn be 
the kernel of dn. Then dndn+i = Q implies that dn+\ factors through kn 

as d = ke, for some e. The cokernel of e has a codomain which is defined 
to be the homology Hn(X), as in the diagram 

e 
Xn+l ^ Cn > * Ha > - 0 

(2) KXn 

with row right exact and column left exact. I t is readily verified that 
H(X)= {Hn(X)\n = 0, 1, 2, • • • } is an additive functor H: DG(A) 
->G(A). 

This homology functor is not exact. However, a standard construc­
tion yields a "connecting morphism" as follows. If E: X>—J/F—»°Z 
is a short exact sequence of DG-objects for A, its connecting morphism 
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is a morphism £*: H(Z)-*H(X) of graded objects, with degree — 1, 
such that the following triangle 

. , , B(Xh BÛ ^H(Y) 

>f f (Z / * 

is exact at each vertex. This E* may be defined as that morphism 
whose "graph" is the composite of the following (additive) relations 
(Homology, II .6): 

H(Z) >Z — > Y > Y^—>X >H(X). 

Our graded objects have been graded by the positive integers 
(n = 0, 1, 2, • • • ) ; according to Bourbaki, "positive" means "non-
negative." One may also consider objects • • • , X_2, X-i, Xo, Xi, - • • 
graded by all the integers Z and the corresponding differential Z-
graded objects X; the homology of such a DGz-object is a Z-graded 
object. 

For DG-objects X and F of A the Z-graded abelian group 

(4) Homn(X, Y) = I I homA(X*, Fn+*), n = 0, ± 1, • • • , 
k 

where J J denotes the cartesian product over all fe£Z, has as ele­
ments ƒ of degree n the morphisms ƒ = {ƒ*: Xh—»FA+n} : X-+Y of de­
gree n between the graded objects X and F. Define a differential 
D: Horn»—»Homn_i from the differentials dy of F and dx of X by 

(5) (Df)k = drh + ( - l)»+1/*-i<Zx: Xk -> F*+n_!. 

These definitions yield a DGz-abelian group Hom(X, F) which is a 
functor 

Horn: D G ( A ) ° P X DG(A) -» DGz(Ab), 

additive and left exact in each argument separately (Homology, 11.3, 
VI.7). We write Horn, with a capital "H," for this DGz-group, which 
consists of morphisms/: X—*Fof graded objects, to distinguish it from 
hom(X, F), with the lower case "h," which is the abelian group of 
m a p s / : X—>F (of degree zero) of DG-objects. Note that the cycles 
of degree zero in Hom0 are all those ƒ of degree zero which satisfy 
D / = 0 ; by (5), these are exactly the maps X—>F of DG-objects 
(the chain transformations). A homotopy s: fo^g between two such 
maps ƒ, g: X-+Y is defined to be an element s£Homi (X, F) with 
Ds=f—g. By (5), with n = 1 , this states that 
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(6) dYSk + Sk-\dx = ƒ* — gk, k = 0, 1, • • • . 

This is the usual definition of a "chain homotopy" betwen two chain 
transformations. 

In Chapter IV we shall use resolutions of an object A of A. Regard 
A, as in (1), as a trivially graded DG-object. Then a DG-object X 
over A is defined to be a DG-object X together with a map e: X^>A 
of such objects; in other words, it is a diagram 

c d d d 
(7) 4 < - X o < - X i < - X 2 < 

in A with dd = 0 and ed = 0. The map e induces e*: HQ{X)—^A. 
A contraction (or a contracting homotopy) for e: X—>A consists of 

a map s-.ii A—>X of DG-objects with €S_I = 1A and a homotopy 
s: l(f^s-ie. Thus a contraction gives a diagram 

€ J d 
(8) -4 *=> Xo ^ ^ i =̂> X2 ±5 • • • 

in A such that dd = 0> €d = 0> and 

(9) €$_i == 1, s-ie + dso = lo, snd + dsn+1 = ln +i , n = 0, 1, • • • . 

The presence of 5 insures that €*: HQ(X)=A and Hn(X)—0 for n > 0 . 

CHAPTER III . T Y P E S OF ALGEBRAS 

15. Coherence. For many different sorts of algebras—graded, bi-
graded, or differential graded—the formal properties can be developed 
in common, as a theory of algebras over a suitable type of category. 

A category with a multiplication is a category C together with a co-
variant bifunctor ® : CXC—»C; this bif unctor will be written between 
its arguments, so that morphisms f: A—>A' and g\B-*B' give a 
morphism f®g: A®B—>A'®B' of C. The conditions that ® be a 
bifunctor read 

U ® Is = W , (ƒ'ƒ) ® (g'g) = (f'®g')(f® g), 

the latter whenever the composites ƒ'ƒ and g'g are defined. Assume 
that there are given natural isomorphisms ("associativity" and "com-
mutativity ") : 

(1) a = a(A, B, C): A ® (B ® C) ^ {A ® B) ® C, 

(2) c = c(A, B): A ® B^B ® A. 

We may also assume that C has a fixed object K, called the ground 
object, which acts as an identity for the multiplication ®, in the sense 
that there are given natural isomorphisms (left and right "identity" 
isomorphisms) 

s-.ii
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(3) e = e(A):K® A ÇÉ A, e': A ® K9ÉA. 

For example, let C be any category with finite products and a ter­
minal element. The product AILB of two objects of C then provides 
such a multiplication in C. Since both triple products ^LII(^IIC) and 
(AILB)ILC have co-universal properties, relative to their projections 
on A, B, and C, there is a natural isomorphism for associativity, and 
similarly for commutativity. If K is a terminal element for C, then 
each object C, with 1 : C—>C and the unique map C—+K as projections, 
provides a product C— CILK, and hence identity isomorphisms e and 
e'. 

Again, for example, let K be a commutative ring (with identity 
element) and K-Mod the category of all i£-modules. The tensor 
product A ®B of two X-modules is a X-module, and so provides a 
multiplication for i£-Mod. Associativity and commutativity isomor­
phisms are given by the familiar maps 

(4) x ® (y ® z) —» (x ® y) ® z, x ® y —> y ® x. 

Consider now iterated associativity diagrams, such as the pentagon 

A <g> (B 0 (C ® D)) 2 >-(i4 <g> J5) <g> (C ® D)—^^((A ® B) ® C) ® D 

(5) l ® ÛNS^^ So* 01 

A ®((B®Q®D) — ? V >> U ® (B ® O) 0 />. 

Here each a» is an evident "instance" of the given natural associativ­
ity isomorphism; for example, a2 = a(A®B, C, D). In the familiar 
associativity maps, such as (4) for modules, this diagram is clearly 
commutative, though it would not be so were (4) replaced by the 
different natural isomorphism x®(y®z)-+— (x®y)®z. With Bén-
abou [ l ] , we say that an associativity isomorphism a is coherent if 
every diagram built up from such instances of a is commutative. 
Here "every diagram" (see MacLane [78] for details) means every 
diagram whose vertices represent iterates of the tensor product func­
tor and whose edges are tensor products of identity maps and in­
stances of the associativity a; while an "instance" of a is one formed 
from a by substitutions (as in §5) of iterates of the tensor product 
functor. 

Thus coherence involves an infinite number of conditions which 
can be reduced to a single condition; Stasheff [97] by geometric 
means and MacLane [78] by algebraic ones prove 

THEOREM 15.1. In a category C with a multiplication, a natural associ-
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ativity isomorphism is coherent if and only if all the pentagonal diagrams 
(5) are commutative. 

Here the naturality of a is essential to this theorem; it yields the 
commutativity of diagrams such as 

A ® [(B ® (C ® Z))) ® E] -^ [A ® (B ® (C ® Z)))] ® E 

1 1 ® (a ® 1) i (1 ® 0) ® 1 

A ® [((5 ® C) ® Z>) ® E] -» [4 ® ((5 ® C) ® £>)] ® E. 

The full diagram of all commutativities for products of five objects 
forms a polyhedral subdivision of a 3-cell, and similarly in higher 
dimensions (Stasheff). 

Associativity and commutativity isomorphisms a and c will be 
called jointly coherent if and only if every diagram built from in­
stances of a and c is commutative. Again, this coherence requirement 
can be reduced to a finite number of conditions; Epstein [31] and 
MacLane [78] prove 

THEOREM 15.2. Associativity and commutativity isomorphisms a and 
c are jointly coherent if and only if the pentagonal diagrams (5) and 
the two following diagrams are always commutative : 

A ® B 

(6) B® A, 

/c 

A® B 

A ® (B®C) > (A ® B) ® C > C ® (A ® B) 

(7) i l ® * a la 
A ® (C ® B) > (A ® O ® B > (C ® A) ® B. 

These coherence conditions will insure, for example, that for four 
given objects there is a unique natural isomorphism 

m: (A ® B) ® (C ® D) ^ (A ® C) ® ( 5 ® D); 

indeed, in the familiar cases this is the "middle four interchange" 
which acts on elements as (a®b)®(c®d)—>(a®c)®(b®d). 

Finally, sufficient joint coherence conditions for a, c, and left and 
right identity isomorphisms e and e' are the three diagrams of Theo­
rem 15.2 plus the condition e' = ec: A ®K—*A and the two conditions 
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K® (B ®C) > (K ® B) ®C A ® (K®C) > (A ® D) ® C 

le ie®\ [\®e [c®l 

B ®C = B ® C, A ® C < (K® A) ® C. 

Kelly [61 ] has studied the independence of these coherence condi­
tions. 

16. Tensored categories. We now define the type of category 
(examples: i£-modules, bigraded X-modules) over which a formal 
theory of algebras may be developed. A tensored category D will be 
an abelian category equipped with a selected ground object K and a 
bifunctor ® : D X D - > D which is additive and cokernel preserving 
( = right exact) in each argument separately. Moreover, there are 
given natural isomorphisms a (associativity), c (commutativity) and 
e, e' (left and right identity to K) which are jointly coherent, in the 
sense just discussed. 

If D is a tensored category, so is the category G(D) of graded ob­
jects for D. Indeed, if X and F are graded objects for D, their tensor 
product is defined to be the graded object with 

(1) (X ® F)„ = X) XP ® Y* Œ = iterated biproduct), 

with the evident tensor product of maps. The ground object of G(D) 
is the trivially graded object K. The natural isomorphisms a, e, and 
e' for G(D) are evident, while the "commutation" cn: (X ®Y)n 

—>(Y®X)n is the map ^2XP® Yq—>y^Yq®Xp of biproducts whose 
only nonzero components are the (—i)pqc(Xp, Yq) : Xp® Yq—>Yq®Xp 

for each p+q = n. This exhibits the sign commutation rule: transposi­
tion of objects or symbols of degrees p and q introduces a sign (— l)pq. 
A similar sign occurs in the definition of the tensor products of mor-
phisms f\X-+X' and g: Y—*Y' of given degrees; the morphism 
f®g: X® Y-*Xf® Y' has degree the sum of deg ƒ and deg g, and 
(f®g)n is the map of biproducts whose only nonzero components are 

(2) ( _ 1)P deg # ƒ , ® ft: Xp ® F , -» Xp+deg f ® Y'q+deg 0, p + q = n. 

Similarly, if D is a tensored category, so is the category DG(D). 
For two DG-objects X and F, the grading of X® Y is defined by (l) 
above, while the differential d: (X® F)n—>(X® F)n_i is the map of 
biproducts whose only nonzero components are 

(3) d®l:Xp®Yq-*Xp-1®Yq, (-l)»(l®d):XP®Yq->Xp®Yq-1 

for p+q = n. This agrees with the sign rule (2) and with the usual 
formula 
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d(x® y) = dx® y + ( - l)de« x x ® dy 

for the tensor product of chain complexes (Homology, V.9). 

17. Algebras. Consider the usual data determining an algebra A 
over a commutative ring K. First, A is a X-module; the product ab 
of two elements a and b is bilinear, hence may be regarded as the map 
p:A®A—>A of i£-modules with p(a®b)=ab, while the identity ele­
ment 1 of A provides a unit map u: K—>A of i£-modules via k—>kl. 
The further conditions (associativity, etc.) may then be stated in 
the tensored category i£-Mod. Exactly the same process applies to 
other types of algebras. 

To state this process generally, let D be a tensored category with 
ground object K. A D-algebra is an object A of D together with two 
morphisms p = pA:A®A—:>A and u = u\:K—»A of D such that the 
diagrams 

a p®\ e e' 
A ® (A ® A) -» (A ® A) ® A > A ® A # ® A -* A<- A ® # 

(1) i 1 ® p ip u ® l \ Î p / \®u 

A ® A > A, A ® A 

commute, for a, e, and ef as in (15.1) and (15.2). The first diagram 
states that the product p is associative, the second that it has a left 
and right "identity element." The ground object K of D is a D-
algebra with product ÖJS: = ^ : K®K—>K. A morphism of D-algebras 
X: A—»A' is a morphism of D such that 

(2) X^A = pA>(\ ® X): A ® A -> A' and XuA = UA>: K - • A'. 

The D-algebras constitute a category Alg(D) with a ground object K. 
An augmented D-algebra is a morphism e: A—>UT in this category. 

The opposite Aop of a D-algebra A is the object A equipped with the 
composite map p\ o c: A®A—»A®A—»A as product. For example (with 
Ab the category of abelian groups) : 

Ab-algebras are rings (with an identity, as always), 
X-Mod-algebras are algebras over the ground ring K, 
G(K-Mod) -algebras are graded algebras over K, 
DG(X-Mod)-algebras are differential graded algebras over K, 

and so on (Z-graded algebras, bigraded algebras, etc.). A D-algebra 
A is commutative if cp = p: A®A—*A. Thus, in view of the sign rules, 
commutativity for a graded algebra over K means, for the product 
of elements, that ab = ( - 1 )«*•>«*« ba. 

The tensor product of two D-algebras A' and A " is the object 
A ' ® A " of D with unit map the composite K-+K®2£-»A'®A" and 
product map the composite 
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(A7 ® A") ® (A' ® A") ™ (A' ® A') ® (A" ® A") ^ ®^ > A' ® A'7, 

where m is the middle four interchange (15.5). This tensor product is 
associative and satisfies i£®A=A==A®i£. Since the tensor product 
of algebras may be regarded as a bifunctor Alg(D) X Alg(D)—»Alg(D), 
the category Alg(D) of D-algebras is a multiplicative category with 
ground object K and associativity and left and right identity iso­
morphisms which are readily seen to be coherent (in consequence of 
the coherence of D). 

With elements, the tensor product algebra A ' ® A " can be char­
acterized as the "universal" algebra in which the elements of A' and 
A " commute. This can be stated without elements. For fixed D-
algebras A' and A", consider the category of all those diagrams of D-
algebras 

X' X" 
A' > 0 < A" 

for which the following diagram is commutative 

X'®X" p 
A' ® A" • Q ® Q——> Q 

, , i C , X " ® A ' P " 
A" ® A' • Q ® £2——* 0. 

The tensor product £2= A'® A", equipped with the two composite 
maps 

e'-1 \®u" 
A'—» A' ® K • A' ® A", A " - > K ® A"-» A' ® A", 

provides an initial object in this category of diagrams. 
In the category Algc(D) of commutative D-algebras, this diagram 

makes A ' ® A " a coproduct and gives a commutativity A ' ® A " 
= A " ® A ' which is coherent (jointly with a, e, and ef). 

This "diagrammatic" description of algebras is especially useful for 
the dual notion, that of a coalgebra. A D-coalgebra C is an object of 
D together with two morphisms, a coproduct q: C—»C®C and a co-
unit v: C—>K such that the duals of (1) hold, that is: 

a(l ® q)q = (q ® l)q: C -> (C ® C) ® C, 

e ' -^l ® 0 ? = 1 = ^ O ® 1)?: C -» C. 

Morphisms and tensor products of coalgebras are defined corre­
spondingly. 

A D-hopf algebra V (Milnor-Moore [79]) is an object F of D which 
is both an algebra (with p, u, and (1)) and a coalgebra (with q, v, 
and (3)) such that u: K—>V is a morphism of D-coalgebras, while 
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v: F—>K and q: V® F—»F are both morphisms of D-algebras. This 
last condition states that the following diagram commutes 

V ® F ^ - 4 (V ® V) ® (V ® F) -^-> (7 ® F) ® (7 ® F) 

(4) ÏP ip®p 
v ^ > v®v, 

with w the middle four interchange. This condition may also be 
read : p is a morphism of coalgebras. 

18. Modules over algebras. Let A be a D-algebra. A left A-module A 
is an object A of D together with a morphism py. A®A—>A of D, 
called "left operation by A," such that 

PA(PA ® l)a = pA(l ® PA): A ® (A ® A) -> A, 

PA(UA ® 1) - e: K ® A —> ^4, 

much as in (17.1). For elements, the first equation would state that 
left operation is associative, the second that left operation by the 
identity element of A is the identity operation. A m a p / : A—*B of left 
A-modules is a morphism of D such that fpA^pB^®/)'- A®^4—>B. 
The composite of A-module morphisms is again such. If k: D—>A is 
a kernel of ƒ in D, as in (11.2), then 

/PA(1 ® k) = pB(l ® / ) (1 ® *) = PB(1 ®fk) = 0:A®D-*B; 

therefore PA(1 ®k) factors uniquely through the kernel k as PA(1 ®k) 
= kp', for some morphism p,:A®D-^D. With this morphism p' as 
left operation, D is a left A-module and k a map of left A-modules. 
Similarly the image (and also the cokernel) of ƒ has a left A-module 
structure, and a sequence of A-module maps is exact if and only if it is 
exact as a sequence of morphisms of D. With such arguments one 
proves 

PROPOSITION 18.1. If A is an algebra f or a tensor ed category D, the 
left A-modules and their maps constitute an abelian category A-Mod(D). 

This category has a "ground object;" the algebra A itself regarded 
as a left A-module, with left operation given by the product in A. 
If A is a left A-module and D any object of D, then D®A is a left 
A-module, with left operation by A given by the composite 

A ® (D ® A) -» (A ® D) ® A ~» (D ® A) ® A -» D ® (A ® A) 

-> D ® A\ 

we call this the A-module structure of D®A inherited from A. In this 
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diagrammatic definition the first three maps are given by the iso­
morphisms a, c, and a"1; by the coherence assumption, it suffices to 
write this composite as the natural isomorphism A®(D®A) 
->D®(A®A). 

Right A-modules R are treated similarly, via a right operation 
R®A—*R. Each right A-module may also be regarded as a left 
Aop-module, with operation Aop®.R—>eR®A—>R. If A and 2 are two 
D-algebras, a A-2 bimodule B is a lef t-A and right-2 module such that 
the composite A®£®2—>A®B-*B is the same as the composite 
A®£®2—»£®2—>B; such a module may also be regarded as a left 
(A®2op)-module. Other formal properties are as usual. 

Since each left A-module is, to begin with, an object of D, there is 
a forgetful functor G: A-Mod(D)—»D. On the other hand, for each 
D in D, the tensor product A ® D is a left A-module with left operation 
inherited from A; this gives a functor F: D—>A-Mod(D), with 
F(f) = l®f. 

THEOREM 18.2. For D a tensored category and A a "D-algebra, the 
functor F with F(JD)=A®D is an adjoint to the forgetful functor G: 
A-Mod(D)—>D from left A-modules to objects of D. Moreover, G is addi­
tive and exact, while F is additive and right exact. 

PROOF. The stated exactness is immediate from the assumed right 
exactness of the tensor product in D. For the rest, it suffices to con­
struct a universal e: I—+GF. For each D, take en to be the composite 
D->K®D->U®1A®D. Then if C is any A-module and ƒ : D-*G(C) a 
morphism of D, we may define a: A®D—>C as the composite A®D 
—>1®/A®C—>C; this is a map of left A-modules, satisfies G(a)eD=f, 
and is the only such a; hence we have a universal junction, as re­
quired. 

Let R be a right A-module and A a left A-module. Their tensor prod­
uct R®AA over A is an object of D, defined as the cokernel object of 
the map h = (pu ® l)a — 1 ®PA, as displayed in the right exact sequence 

h t 
(2) R ® (A ® A) -> R ® A ~> R ® A A -> 0, h = (pB ® l)a - 1 ® pA. 

This corresponds directly to the usual definition with elements, where 
R®AA is obtained from i ? ® ^ by the identifications rk®a = r®\a 
for X£A, r(ER, and aÇz.A. Since h is natural, any map f:A—>A' of 
left A-modules induces a morphism /* = 1 ® A / : R®AA—>R®KA'. A 
similar argument for maps of R shows that ® A is a bifunctor, additive 
in each argument separately. Since the functor ® is right exact in 
D, each right exact sequence A*—YB—»C of left A-modules yields a 
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3X3 commutative diagram with rows the A, B> and C cases of (2); 
the 3 X 3 Lemma {Homology, XII.3.3) then proves that ®A is right 
exact in its second argument. I t is similarly right exact in its first 
argument. This discussion shows that the formal theory of the ten­
sor product works over a tensored category D just as it does for 
modules over an ordinary algebra with honest elements. Moreover, 
our discussion applies also to other cases; for example, it will give all 
the usual properties for modules over a differential graded algebra 
without any extra attention to differential or grading. 

Now let A be a commutative D-algebra and A a left A-module. 
Then the morphism PA: A® A—>A giving the left operation of A on A 
is also a map of A-modules, when A® A has the left A-module struc­
ture inherited from A. The left A-module A can also be regarded as 
a right A-module, with right operation given by the composite 

(3) A® A^>A® A?5 A. 

Moreover, the tensor product over A of two A-modules is again a 
A-module. Specifically, the commutativity of A shows that the mor­
phism h of (2) is a map of the left A-module structures inherited 
from A; hence the cokernel R®AA acquires a left A-module struc­
ture, while the t of (2) is a map of left A-modules. By a similar argu­
ment, h is a map for the right A-module structures inherited from R, 
so that R® \A is a right A-module and thence, as in (3), a left A-
module. The form of the map h now implies that these two left A-
module structures on R® AA—that inherited from i?, and that from 
A—are in fact the same A-module structure. With this tensor product, 
we obtain 

PROPOSITION 18.3. If D is a tensored category, so is the category of 
modules over a commutative D -algebra A. 

CHAPTER IV. RELATIVE HOMOLOGICAL ALGEBRA 

19. Resolvent pairs. This chapter indicates how abelian categories 
and adjoint functors may be used to organize the treatment of de­
rived functors in homological algebra. We restrict ourselves to "rela­
tive" homological algebra and start with a pair of adjoint functors. 
Explicitly, a resolvent pair R of categories is given by the data 

(1) G : A - » M , F : M - > A , u:I-+GF, 

where A and M are abelian categories, G is an additive and faithful 
functor which takes epics in A to epics in M, F is a functor, and 
u is a universal junction of F to G ; it follows (Theorem 13.1) that G 
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is exact, that F is additive and right exact, and that F is an adjoint 
of G. We shall write a: A-+B, /3, • • • for morphisms of A and 
ƒ : L—>M, g, • • • for those of M. 

There are a number of examples of this situation, as follows: 
A pair of rings. Let S be a subring of the ring R, with the same 

identity element as R. Take 

A=left ^-modules, M = left S-modules, F(M ) = R ® SM, uM(m) = 1 <S> m, 

with G: A—»M the evident forgetful functor (regard each left R-
module just as a left S-module). 

A tensored category. Let D be a tensored category and À a D-alge-
bra. Take 

(2) A=left A-modules, M = D, G the forgetful functor, F(M) = A®M; 

Theorem 18.2 gives a universal junction u: I—*GF. This example in­
cludes all the following more explicit cases: 

A multiplicative group G. Let "G-module" mean "left module over 
the integral group ring Z(G)." Take A = Z(G), 

A = G-modules, M = abelian groups, G and F as in (2). 

This may also be regarded as a pair of rings S = ZC.R = Z(G). 
An algebra. Let A be an algebra over the commutative ground ring 

K. Take 

A=left À-modules, M = üT-modules, G and F as in (2), u(m) = l®m. 

An algebra with bimodules. Let T be a it-algebra. Take 

A=r-bimodules, M = right T-modules, G forgetful, F(M) = T<8>M. 

A graded algebra. Let A be a graded X-algebra. Take 

A = left A-modules, M = graded iT-modules, G and F as in (2). 

In particular, A may be the Steenrod algebra over Zp (p prime). 
A DG-algebra. Let U be a DG(X-Mod)-algebra. Take 

A=left J7-modules, M = DG(ÜT-Mod), G and F as in (2). 

Let R be any resolvent pair. Call a morphism a: B-+C a proper epic 
of A if G(a) has a right inverse in M; since G is faithful, it then fol­
lows that a is epic in A. Similarly, call a morphism K: A—+B proper 
monic in A if G{K) has a left inverse in M. A short exact sequence 
A*—>KB—»aC is called proper if cr is a proper epic or, equivalently, K is 
a proper monic; either statement implies that there is in M a bi-
product diagram 
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(3) 
G(K) G{<T) 

0 -> G(A) *=> G(B) ï=± G(C) -> 0. 
5 t 

Any morphism a of A is called proper if its factorization a = Xr (epic 
followed by monic) has r proper epic and X proper monic. A long 
exact sequence is called proper in A if it factors, as in (11.3), into 
short exact sequences which are proper in the sense above. From 
(3) it follows that a DG-object X for A is a proper long exact sequence 
if and only if X has a contrasting homotopy. 

The basic fact now is that those objects in A which are the values 
F(M) of the functor F are "projective" objects for the proper epics, 
because of the following "lifting lemma" : 

LEMMA 19.1. Given y: F(M)-*C and a: B-+C proper epic, the dia-
gram 

P. 
(4) (in A) 

-=>* C 

can be filled in at /3 so as to be commutative. 

In other words, each 7 with domain an F(M) can be "lifted" 
through any proper epic a. 

PROOF. Since a is a proper, G{p) has a right inverse t: G(C)—*G(B). 
By universal junction, the diagram 

tG(y)u 

GF{M) 

(inM) 

can be filled in (uniquely) at j3 so as to be commutative. Then 
G(al3)u = G(a)tG(y)u = G(y)u; since G is faithful, vfi = y, as required. 
This shows that the /3 for (4) can be uniquely described in terms of 
u and t. 

Each object A of A determines an object F(GA) of the form F(M); 
moreover, the theory of adjunction shows that HA: FGA—>A has 
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G(JXA)UA = 1 : GA-+GA ; hence G(JJLA) has a right inverse, so is a proper 
epic. (In other language, there are "enough proper projectives" 
FG{A) for all the objects A of A.) 

20. Resolutions. Continue with a resolvent pair R. A resolution of 
A is a DG-object 

e d d 
(1) 0^-A<-X0^X1<r-X2< 

over A which is an exact sequence with e and each d a proper mor­
phism. A resolution with a free basis i f is a resolution together with 
a graded object M for M such that each Xn is F{Mn)y as in the dia­
gram 

F(Mo) F(M{) F{M2) 

(2) II II II 
0« A< Xo< Xx< X2< . 

A resolution with a contraction s is a resolution X of A together with 
a contracting homotopy 5 for G(X)-J>G(A) such that s2 = 0; that is, 
a diagram (1) in A together with a diagram 

G(e) G(d) G(d) G(d) 
(3) o< G (A) ± = ; G{X0) < = ; G(X1) < = ; G(X2) ± = ; • . . 

J—1 $0 ^1 «Î2 

in M which satisfies (14.9) and s2 = 0. As noted above, every resolu­
tion has such a contraction. The following result is basic for homo-
logical algebra: 

THEOREM 20.1 (COMPARISON THEOREM). Let a: A-*B be a mor­
phism of A, e: X-+A a resolution of A with a free basis and e': Y—>B a 
resolution of B with a contraction. Then there exists a morphism 
<l>: X—>F of DG(A) over a {i.e., with e'<l>o=<i>o) and any two such <j> are 
homotopic. 

PROOF. We are required to fill in the (commutative) diagram 

the bottom row is proper exact, so the lifting lemma will produce 
0o, 4>u <t>2y ' • • in succession. The homotopy between two 0's is ob­
tained similarly. Moreover, the given universal junction un: Mn 
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—>GF(Mn) = G(Xn) provides a unique or canonical choice for the <£'s, 
as follows. 

THEOREM 20.2 (CANONICAL COMPARISON). In the comparison theo­
rem, let X have the free basis M and Y the contraction s. Then there 
exists exactly one <j> over a for which there are morphisms wn: M« 
->G(Fn_i) with 

(4) G{4>n)Un = Sn^Wn: Mn->G(Yn), « = 0, 1, 2, • • • . 

Indeed, <t>n is defined from (4) by recursion if we take 

wo = G(ae)uo9 wn+1 = G(<t>nd)un+i, n = 0, 1, 2, • • • . 

The condition (4) may be stated more briefly as "G(0)w factors 
through w." 

Given two comparisons <f> and <£', there is a similar "canonical" 
homotopy between them. 

There is also a canonical resolution, which may be described as a 
certain adjoint. Let T be the category with objects (^4, e: Y-+A, t)\ 
that is, objects A of A plus resolutions Y of A with a specified con­
traction t, and with morphisms preserving all this structure (i.e., 
commuting with e, d, and i). Let L:T—»A be the forgetful functor 
which assigns to each such object the underlying object A of A. 

THEOREM 20.3 (CANONICAL RESOLUTION). The forgetful functor L 
above has an adjoint B : A—»T. This adjoint assigns to each object A a 
resolution e: B(A)—*A, called the bar resolution, which has both a free 
basis and a contraction s; moreover, each term Bn(A) in this resolution 
has the form Bn G A for some functor Bn : M—>A. 

This gives a conceptual formulation of the result of the usual (pain­
fully) explicit description of B(A). That description (Homology, 
IX. 7) does produce BnA in the stated form Bn G A complete with free 
basis and contraction 5 such that s2 = 0. Now let (A', e: F—*A', t) be 
any resolution with a contraction t. From the explicit form of the 
contraction s one may show that the canonical comparison <f>\ B(A) 
—*Y over a morphism a: A—>A' can be characterized as that 
(unique) map of DG-objects over a which commutes with the con­
tracting homotopies; i.e., which satisfies 

G(«o)*-i = UG(a) , G(tf>nK-i = /n-iG^n-O, n « 1, 29 • • • . 

Thus <£ is a map in our category T, and is unique, so that the identity 
map A—>L(A, t: B(A)—>A, s) is a universal junction, as required. 

The bar resolution so described includes many familiar cases. In 
the multiplicative group case of §19, it is exactly the complex first 
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used by Eilenberg-MacLane to define the cohomology of groups; in 
the "algebra with bimodules" case it is exactly the complex first used 
by Hochschild to define the cohomology of an algebra. 

21. Derived functors. Let T: A—»C be an additive functor between 
abelian categories, where A comes from a resolvent pair R. The bar 
resolution for R can be used to give a canonical definition of the de­
rived functors Tn: A—>C and their "connecting homomorphisms." By 
applying T to each term Xn of a DG-object for A we get a DG-object 
for C, hence T yields an additive functor TV DG(A)—»DG(C). In 
particular, T*B(A) is a DG-object. Now B(A), as a resolution, has 
homology HQ=A and Hn = 0 for n>0, but, if the original functor T 
is not exact, the complex T*B(A) need not have homology zero. Its 
homology defines the derived functors Tn: A—*C as 

(1) Tn(A) = Hn(T*B(A)), Tn(a) = Hn(T*B(<x)). 

Next, if E: A»—*Z>—»C is a proper short exact sequence in A, its 
propriety means that the corresponding short exact sequence 
G(A)>—>G(D)—»G(C) in M is split. Hence, each functor B,[ of 
Theorem 20.3 carries this into a split exact sequence, so 
Bn(A)>—y.Bn{D)—»Bn(C) is a split exact sequence in each dimension 
n, as is 

T*B(E) : 0 -> T*B(A) -> T*B(D) -> T*B(C) -> 0. 

This exact sequence of DG-objects for C has a connecting morphism 
(§14) dropping dimensions by 1. In view of the definition (1), this 
connecting morphism is a map 

(2) £*: Tn(C) -> ZV-i(i4), n = 1, 2, • • • . 

Here each side may be read as a functor of the exact sequence E; it 
follows readily that E* is a natural transformation of these functors. 
All told, the "derived system" { T*, E*} for T consists of the functors 
{To, Ti, Ti, • • • } together with the natural connecting morphisms 
(2) for each proper E. Such a system is called a proper connected 
sequence of functors. 

THEOREM 21.1. If T: A—>C is an additive functor between abelian 
categories, while R is a resolvent pair for A, then the derived functors for 
T constitute an TL-proper connected sequence of functors with the follow­
ing three properties: 

(i) For n>0 and M in M, Tn(FM) = 0; 
(ii) For each proper short exact sequence E: A»—>D—y>C,the long 

sequence 
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(3) > Tn(A) > Tn(D) > Tn(C) —^ Tn^(A) 

of derived functors {with T_i == 0) is exact in C ; 
(iii) If T is right exact, then To may be identified with T. 

Moreover, for T right exact, these three properties characterize the se­
quence of derived functors up to natural isomorphism. 

PROOF. The comparison theorem allows us to replace the bar reso­
lution of A by any other resolution X—>A with a free basis and to 
compute Tn(A) as Hn(T*(X)) ; this is usually the most efficient meth­
od of computation. The connecting morphisms can be calculated 
similarly from suitably constructed short exact sequences of resolu­
tions. In particular, A = FM has a free resolution X with X0 = FM 
and Xn = 0 for n>0. As this resolution (and its homology) vanishes in 
properly positive dimensions, Tn(FM)=0 for n>0. This gives (i). 
The exact triangle (14.3) for the connecting morphisms yields the 
exactness of (3). Finally, when T is right exact, it turns the right 
exact sequence Bi(A)—>B0(A) —»-4—>0 into a sequence 

TBX(A) - • TBo(A) ->TA-*0 

right exact in C, hence shows H0(T*B(A))=TA. Standard methods 
show that these three properties characterize the Tn-, this is the 
"axiomatic description'' of derived functors, familiar from special 
cases. 

There is another characterization, by "co-universality." Let 
{S#, £#} be another R-proper connected sequence of functors; that 
is, a family of additive functors {Sn: A—>C\ n = 0, 1, 2, • • • } to­
gether with a function which assigns to each n and each proper E a 
morphism E§: Sn{C)—^Sn-i(A) which is a natural transformation of 
functors of E. From the previous three properties one proves 

THEOREM 21.2. If T: A—»C is right exact with derived sequence 
{ r*, £ * } , while {5#, £#} is any "R-proper connected sequence, then each 
natural f : So-+Textends uniquely to a morphism f * : {5#, £#} —> { T*, E*}. 

Here ƒ* is a morphism of proper connected sequences; that is, a 
family {fn: Sn-*Tn\n = 0, 1, • • • } of natural transformations which 
commute with the connecting homomorphisms £# and £*. Now let 
Csq(A, C) denote the category of proper connected sequences of func­
tors, with these morphisms, while CA denotes the functor category of 
additive functors. Compare these two categories by 

CAScsq(A, C); 



90 SAUNDERS MAC LANE [January 

here D is the functor which assigns to each additive T its derived 
sequence, while I takes the initial term of any connected sequence. 
In this language, the theorem above states that if T is right exact 
there is a (natural) bijection 

Nat(/(S*), T) S* Csq(S*, DT). 

In other words, the functor of 5* on the left is corepresentable, in the 
category Csq, by the object DT. As with any corepresentation, this 
property characterizes the derived sequence DT. More generally, let 
T: A—»C be any additive functor and LTa proper connected sequence 
with initial term (LT)0=T. Restricting a morphism of connected 
sequences to the initial term gives a map 

Csq(S* LT) -> Nat(/(S*), T). 

When this map is a bijection, L T is called the sequence of left satel­
lites of T. Thus, for a right exact T, the derived functors agree with 
the satellites. 

The exact triangle of (14.3) yields another exactness result for 
derived functors. 

THEOREM 21.3. Let Rbe a resolvent pair of categories, and S: T'—*T 
—*Tf a sequence of natural transformations of additive functors from A 
to the abelian category C such that each object M yields a short exact 
sequence T'(FM)>—y>T(FM)—»T'(FM) in C. Then S determines a 
family of transformations S*: TV (A)—>Tn-i(A) for # = 1, 2, • • • , 
natural in A, and the long sequence 

(4) > Ti{A) -> Tn(A) -> IV' ( i l ) - i TV-xU)-» • • • 

is exact in C for every object A of A. 

PROOF. Since each object Bn(A) has the form F(Mn) for some 
JkfnGM, the sequence TJB(A)>—> T*B(A)—»TJ'B(A) is a short 
exact sequence of DG-objects for C; its connecting morphism gives 
the desired 5*. 

These methods apply also to a con tra variant functor T: Aop—»C. 
Since T reverses the order of composition in A, the corresponding 
functor T* turns any DG-object X for A into a "cochain complex": 

r*(x): T(XO) -> rpro -* T(X2) - > . . . , r(<o = <; 

that is, a graded object for C with S of degree + 1 and 85 = 0. The 
usual construction (ker 5)/(im 5) yields the cohomology Hn(T*(X)), 
normally written with an upper index n. The derived functors and 
connecting morphisms are 
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Tn(X) = Hn(T*B(A)), £*: Tn(A) -> T^C), 

and each proper short exact sequence E: Ai—>D—»C in A yields a 
long exact sequence 

E* 
(5) • Tn(C) -> Tn(D) - • T»(A) > r^+KO -> • • • in C. 

If T is left exact (i.e., carries right exact sequences in A to left exact 
sequences in C), then T°=T. The analogue of (4) holds. 

This treatment of derived functors subsumes many cases, corre­
sponding to the instances of resolvent pairs listed in §19. 

The relative torsion product (Hochschild). Consider the resolvent 
pair given by a pair S C ^ of rings. A proper exact sequence of left 
-R-modules is then an exact sequence of JR-modules which splits as a 
sequence of S-modules. For a fixed right -R-module P , let T D : A—*Ab 
be the additive functor from left -R-modules to abelian groups defined 
by TD(A) =D®RA. Since a ring R is just a Z-algebra, this functor is 
right exact, by §18. The derived functors of TD are known as the 
relative torsion products and are written as Tor£fi,5)(£>, ^4); Tor0 is 
just D®RA = TD(A). Theorem 21.1 yields a connecting homomor-
phism and a corresponding long exact sequence in the second argu­
ment A. To get a corresponding result for the first argument D we 
may use Theorem 21.3. Since F(M)=R®sM, 

TD(FM) = D®R(R ®S M) = (D®BR) ®SM^D®SM, M G M. 

Thus, if L:D'*—yD—»D" is an S-split exact sequence of right R-
modules, the corresponding sequence TD'(FM)->TD(FM)—:>TD»(FM) 
is 

0->D' ®SM->D®SM-*D" ®sM-+0, 

and is exact because L is S-split. Hence Theorem 21.3 yields connect­
ing homomorphisms L*: T o r ^ C - D " , A)->TOT(*L¥(D', A) and a cor­
responding long exact sequence in the first argument D of the relative 
torsion product. 

The relative Ext. Let R be any resolvent pair. Each D in A gives a 
functor TD(A) =homx(A, D) which is con tra variant; that is, a func­
tor TD: Aop—>Ab. It is left exact. Its derived functors, found as in 
the con tra variant case above, are the relative ext functors 
extA,nM04> D)' An element of extn may be regarded as a congruence 
class of proper long exact sequences from D to A with n intermediate 
terms; the congruence relation is that introduced by Yoneda (Ho­
mology, III.5 and XII.5). The theorems above yield connecting homo­
morphisms and the usual long exact sequences in A or in D. 
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The cohomology of groups. Let G be a multiplicative group and R 
the corresponding resolvent pair, as in §19. The additive group Z of 
integers is trivially a G-module (i.e., in A). The functors extl,M(Z, A) 
= Hn(G, A) are the cohomology groups of the group G with coefficients 
in the G-module A. The homology groups of G are similarly defined 
(Homologyy X.5). 

The cohomology of algebras. Let T be a i£-algebra and R the corre­
sponding resolvent pair, with A consisting of T-bimodules, M of 
right T-modules. The algebra T itself is trivially a T-bimodule, with 
left and right operation given by the product in T. Let A be a T-
bimodule. The functor extl,M(T, ^4) is the Hochschild cohomology 
group Hn(T, A) of the algebra T with coefficients in A. In this case, 
each homACB, A) has the structure of a i£-module, so extl,M and Hn 

can be regarded as functors to the category K-Mod. 
All these cases use projective resolutions, such as the bar resolu­

tion. There is a dual case of covariant functors T: A—»C which are 
left exact; the most important case is that in which A is the category 
of sheaves S on some topological space X, and T(S) =T(S), the group 
of global cross sections of the sheaf 5, is left exact. The derived func­
tors of T are the cohomology groups of X with coefficients in the sheaf 
S. In this way the notion of derived functor (or of satellite functor) 
unifies the ideas of cohomology of groups or of spaces. These derived 
functors may be computed from injective resolutions, in particular 
from a canonical "flabby" resolution introduced in [39] by Gode-
ment. This resolution has been extended to more general categories 
by Huber [52]; Schaf er has shown in [90 ] that it is the exact dual of 
the categorical bar resolution. 

Here we have spoken of sheaves of abelian groups (or of modules 
over some fixed ring). It is natural to consider, more generally, 
sheaves with values in a suitable abelian category; this has been ef­
fectively carried out by Gray [40 ]. The category must be one in 
which the direct limit functor is exact; derived functors of this functor 
have been studied [83], [88]. 

22. Differential graded algebras. Fix a commutative ground ring 
Ky and regard it as a differential graded algebra (with trivial differen­
tial and grading). An augmented differential graded K-algebra U (a 
DGA-algebra for short) is a DG(i£-Mod)-algebra U together with a 
morphism € = eu: U-+K of such algebras, called the augmentation. By 
neglect, each such algebra U can be regarded simply as a graded 
2£-algebra Gr(Z7); here Gr is a forgetful functor 

Gr: Alg(DG(Jf-Mod)) -> Alg(G(JT-Mod)). 
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(Forget the differential, but remember the grading.) 
The various categories of modules at hand (for notation, see Prop­

osition 18.1) are: 
G(jRT-Mod), the graded X-modules M; call M connected il M0 = K; 
DG(i£-Mod), the differential graded i£-modules (DG-i£-modules 

for short) ; 
(Gr U)-Mod(G(K-Mod)), the left modules over the graded K-

algebra Gr U\ by neglect, each such module is also a graded K-
module ; 

[/-Mod(DG(i£-Mod)), the left [/-modules X. Each such is auto­
matically a DG-i£-module, and, by further neglect, a G-i£-module 
Gr(X). Also, K itself is a left [/-module tK, when the left operation of 
u on kÇzK is defined by pull-back along the augmentation eu as uk 
= e(u)k. A left [/-module X is augmented if there is given a map 
e = €x'- X-*eK of left [/-modules. 

Each [/-module is a DG-object and so is like a resolution; in par­
ticular, there are comparison theorems for [/-modules which depend 
on the following definitions of "free" and "contractible" such mod­
ules. 

A (connected) free basis M for an augmented left [/-module X is a 
connected graded submodule MCGr X with the same augmentation 
(exk = k for all k^Mo — K) such that the correspondence u®m-*um 
provides an isomorphism 0: U®M=X of augmented graded K-
modules—and hence automatically an isomorphism of Gr( ^ - m o d ­
ules. (However, 0 is not required to be an isomorphism of [/-modules; 
that is, 0 need not commute with d.) Given a free basis M> the injec­
tion L_i: K—>KC.Mo is then a map t^\ K-+X of G(X-Mod) with 
c U = l. 

A contraction s for an augmented left [/-module Y consists of maps 

(1) 5_i: K -> Fo, sn: Yn -> Yn+1, n = 0, 1, 2, • • • , 

of üT-modules such that 

(2) eyS-i = ljr, dso + s_i€ = lr0 , dsn+i + snd = lr0 , snsn-i = 0. 

The same formulas, specialized by setting U=K> define a contraction 
for an augmented DG-i£-module. An argument like that for the 
canonical comparison of §20 now proves 

THEOREM 22.1 (CANONICAL DG-COMPARISON). If U is a DGA-

algebra, X an augmented U-module with a free basis M, and Y an aug­
mented V-module with a contraction s, there is a unique map <j> : X—* Y 
of augmented V-modules such that 

(3) 4>(Mo) C s^K, 4>(Mn) C s*-iY^h n = 1, 2, • - • . 
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These conditions amount to the statement that 4> on Mn "factors 
through s." 

As in the comparison Theorem 20.1, two comparisons <£ and <t>' (not 
necessarily canonical) are homotopic—via a canonical homotopy ; two 
homotopies between the same comparison are themselves homotopic, 
and so on through "higher homotopies." To formulate this, after the 
manner of Dold's treatment [12] of the Eilenberg-Zilber theorem for 
simplicial complexes, introduce to each pair of augmented [/-modules 
X and Y the DG-i£-module Homu{X, Y) with terms Homn given by 

Hom0(X, Y) = {maps/ : X—> Y of [/-modules (of degree 0)}, 

Hom«(X, F) = { maps g: X—* Y of Gr([/)-modules (of degree n)}, 

and with differential D: Homn—»Homn_i defined exactly as in (14.5) 
—the special convention for Hom0 insures that this yields a graded 
module and not a Z-graded module, as was the case in §14. If X h a s 
a free basis with the corresponding t-\: K—*X, we augment 
Homcr(X, Y) by € = €H defined from t-i as 

(4) €//: Hom0(X, Y) -> K, eHf = er/oZ-il (1 the identity of K). 

THEOREM 22.2 (DG-COMPARISON HOMOTOPY). If U is a DGA-

algebra, X an augmented V-module with a {connected) free basis M, and 
Y an augmented U-module with a contraction s, then the DG-K-module 
Hom^CX", Y) has a contraction S. 

PROOF. We shall describe a "canonical" contraction. To give 
5-i : K—»Hom0, it suffices to define S-i on the identity 1 of K to be 
some element of Hom0(X, Y) ; we take 5_i(l) to be the canonical com­
parison </>: X—>Y constructed in Theorem 22.1. For nèO, Sn: Homn 

—•Homn+i assigns to each Gr([/)-module map g: X-^> Y another such 
map Sng- But X= [7® M as a Gr{U)-module, so Sng is determined by 
its values on M ; we give these by recursion on the degree / in M as 

{Sng)m = s[g + {-l)n+1{Sng)d]tn, m G Mu 

One then verifies that 5 is a contraction (of square zero). 
"Factoring out" by the action of U will turn each [/-module into 

its "reduced" DG-module. In detail, let J be the kernel of the aug­
mentation eu: U—tKj so that ƒ»—» U—»K is an exact sequence of 
graded X-modules. Regard K as a right [/-module Kt, by "pull-
back" along e^. For each left [/-module A, the tensor product K®uA 
is then a DG-X-module called the reduced module A of A. Since the 
tensor product is right exact, there is an isomorphism 

(5) A - K. ®u A Si A/J A 
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{Homology y Proposition X.10.1), where J A is the DG-üT-module con­
sisting of all sums of products xa for # £ / , aÇzA. The corresponding 
projection/: A-+A/JA^A is a map of DG-i£-modules, and is natural. 
If A is augmented, so is A. If A has a free basis M, (5) and 0: U®M 
=A gives an isomorphism Gr(J)=M. 

23. The bar construction. For DGA-algebras the bar resolution 
takes a new form. 

THEOREM 23.1. If Uis a DGA-algebra over K, there is an augmented 
left TJ-module B(U) which has a (connected) free basis M and also a 
contraction s and is such that M is exactly the image of s. This property 
characterizes B(U) up to isomorphism. 

PROOF. AS in §19, U gives a resolvent pair. The corresponding bar 
resolution assigns to each left [/-module A a DG-object (for the 
category of [/-modules) which we write as B(U} A) to exhibit the 
dependence upon [/; in particular, we write B(U) for B(U, €K). Now 
A is in the category [/-Mod(DG(i£-Mod)), so 

B(U, A), B(U) G DG([/-Mod(DG(Z-Mod))). 

This expression exhibits B(U) as a "complex of complexes" (a 
DG-object for a category of DG-objects), with two gradings and two 
differentials. By taking a new grading which is the sum of these two 
and a new differential which is a suitably signed sum of these two— 
as discussed in Homology, X.9—we turn B(U) into a singly graded 
object B*(U) with a single differential which satisfies the conditions 
of this theorem. For example, the fact that M is the image of (s-\K 
= Mo, 5n(5*([/))n = ikfn+i) follows from the corresponding property 
of the original bar resolution. The uniqueness of B*(U) is an immedi­
ate consequence of the canonical DG-comparison, because by (22.3) 
the canonical comparison of B*(U) to itself must be the identity. 

This augmented left [/-module B*(U) is Cartan's (acyclic) bar 
construction. Its corresponding DG-K-module ~B( U) is the (reduced) 
bar construction due to Eilenberg-MacLane. Both may be described 
by explicit formulas (Homology, X.10). The corresponding projection 
B*(U)-*B*(U) is the algebraic analogue of a principal fibre bundle 
with fibre [/, so that 5*([/) is a "classifying space" for [/. If JU: [/—»[/; 

is a map of DGA-algebras (over the same K), then the [/'-module 
B%(U') may be regarded, by pull-back along /z, as a [/-module. Since 
B*(U') has a contraction, the DG-comparison gives a canonical map 
B*(JA): B*(U)—*B*(U') and a corresponding map for the reduced 
modules. Thereby ~B* becomes a functor on DGA-algebras to DG-i£-
modules. 
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Now suppose that the algebra U is commutative. This implies that 
the product map p: U&U-+U for U is a map of DGA-algebras. 
Hence B*(U) may be regarded, by pull-back along p, as a left 
(£/<g> t/)-module with a contraction. On the other hand B*(U) ®B*(U) 
is a left (£/<8> LO-module with M ® M as free basis. The DG-compari-
son thus yields a canonical map B9(p): B*(U)®B*(U) —»J3 *([ƒ)• Using 
the "canonical" characterization of B*(p), it follows that Bm(U) is a 
DGA-algebra under this product. This product factors through the 
projection B*—±B9, so B*(U) is also a DGA-algebra. Thus for a com­
mutative U the reduced bar construction may be iterated to give 
DGA-algebras (E9)n(U), » = 1, 2, • • • . 

The bar construction was devised to treat topological spaces of 
type i£(II, n)—spaces which have only one (abelian) homotopy group 
II in dimension n. The (minimal simplicial) chain complex of such a 
space is a DGA-algebra over Z. A theorem of Eilenberg-MacLane as­
serts that this chain complex is equivalent to (i?*)n(Z (II)), where 
ZÇQ) is the integral group ring of II. 

For II abelian, Z(II) is a hopf algebra with a commutative prod­
uct (and trivial grading and differential). In general, let U be a 
DG(i£-Mod)-hopf algebra (§17); via the co-unit as augmentation, U 
is then a DGA-algebra. Using the DG-comparison, one then shows that 
B\U) and B*(U) are also DG(i£-Mod)-hopf algebras; for example, 
the commutativity condition (17.4) for a hopf algebra is verified by 
showing that each composite map is canonical, using the standard 
contraction in each tensor product. By iteration, the (B*)n(U) are 
also DG(i£-Mod)-hopf algebras. 

CHAPTER V. HIGHER HOMOTOPIES 

24. Proper categories. In the bar construction and its iterates, the 
natural coproduct is not commutative, but only commutative "up to 
higher homotopies." The same is true of the diagonal map for the 
chain complex of a simplicial set. Current investigation of these 
higher homotopies, carried out in collaboration with J. F. Adams, 
indicates that there are so many of them that general conceptual 
methods are needed for their treatment. In this chapter we describe 
two special types of categories which promise to be useful in this 
treatment. 

All the special categories H to be considered have as objects the 
natural numbers {0, 1, 2, • • • } ; we write 

•o 
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for homnCw, n). A product and permutation category H (a PROP, for 
short) is a category with the natural numbers as objects and with two 
further structures, as follows: 

(i) For each w, the symmetric group S(n) on n letters is given as a 
subgroup of the group of all invertible elements of 

in particular, the identity permutation in S(n) is the identity mor­
phism l n : n-±n. 

(ii) There is given a functor ® : HXH—>H, called the product and 
written between its arguments, and with object function m®mt 

= m+m\ Its mapping function therefore assigns to morphisms 
ƒ: m—>n and ƒ ' : m'-^n' of H a morphism f®f: rn+m'-^n+n'. The 
standard requirement that ® preserves the composition reads 

(1) (fog)®(f'og') = (J®f)o(.g®g'), 

valid whenever the composites on the left side are defined. 
There are three axioms. First, we require that the mapping func­

tion ® be associative; that is, that 

(2) <J®f)®f" = / ® ( / ' ® / " ) . 
Second, for a(ES(n) and <r'ÇzS(n'), let o-X<r'<E:S(n+n') denote that 
permutation of n+n' letters which acts on the first n letters as does 
<T and on the remaining n' letters as does or'. We require that 

(3) a ® a' = 0- X </: n + ri -» n + n\ a E S(n), a' £ S(n'). 

Third, let r denote the nonidentity element (the transposition) in 
5(2). For any natural numbers m and m', let r(m,m/> be that permuta­
tion in S(m+m') which interchanges the first block of m letters and 
the second block of m' letters. For a n y / : m—m and ƒ ' : m'-^n' in H, 
we require that 

(4) r ( B , B O ( / ® / ' ) = 0" '®/)r ( m .m O . 

For example, regard each natural number n as a finite ordinal; 
that is, as the set n— {0, 1, • • • , n — 1} of all the preceding ordinals. 
Let N denote the category with objects all finite ordinals and mor­
phisms/ : m—*n all functions on the set m to the set n—plus, for good 
measure, the identity morphism 1: 0-~»0. In this category there is an 
evident coproduct diagram m—>rn+n<r-n. Take this coproduct as the 
functor ®, and take the one-one functions n—m as the permutations. 
Then N is a PROP. 
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Again, let C be any category with finite products and a terminal 
object T. For a fixed object C, write C°=T and CW = CX • • • X C 
(n factors). Take He to be the subcategory of C with objects all 
powers Cn (identify them with the objects n) and with morphisms 

H c ( / = homc(Cm>CA)-

This subcategory has CmXCn=Cm+n as a product; take this product 
to be the functor ®. For <r£:S(n), take <r*: Cn—*Cn to be the corre­
sponding morphism of C; that is, the morphism characterized in 
terms of the n projections p$: Cn—>C by pffj<T* = pj- With these struc­
tures, He is a PROP. An arbitrary PROP H is said to act on the 
object C of C if there is given a morphism H—>Hc of PROPs. 

Another useful construction yields the free PROP on a given set 
of generators and also the PROP with given generators and relations. 
With some formal complications, one may give existence proofs for 
these objects and obtain for them the expected properties of free 
objects. 

These categories are adapted to the study of universal algebra. 
For instance, consider monoids; that is, sets C with two maps p: CXC 
—>C and u: T—>C (with T the one-point set) satisfying the usual 
conditions 

tip X 1) = p(l X p): C3 -> C, p(u X 1) = 1 = p(l X u): C -> C, 

which state that p is associative and u a left and right identity. In­
troduce a corresponding PROP M {M for monoid) described as the 
free PROP on two generators p:2—>1 and u:0—>l subject to the 
relations 

(5) p(p ® 1) = p(l ® p): 3 -» 1, p(u ® 1) = 1 = p{\ ® «): 1 - • 1. 

If M acts on a set C, then C is a monoid, in the usual sense, and con­
versely. With analogous definitions, if M acts on a iT-module A, then 
A is a X-algebra. This is parallel to the proposal of Eckmann-Hilton 
to define "monoid" (and similarly "group") in an arbitrary category 
which has finite products. 

In Lawvere's study [67] of universal algebra, an algebraic theory 
A is defined to be a category with objects the natural numbers such 
that each natural number n is the categorical product of the object 1 
with itself n times. From the properties of products, it follows then 
that 

S(n) C A 
: 
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and hence that every algebraic theory is a PROP, when ® is taken to 
be the categorical product (conversely, however, there are PROPs 
which are not algebraic theories). Each algebraic theory determines 
the category Ens (A) of all algebras of type A, where an algebra of type 
A can be described as a product-preserving functor A—»Ens to the 
category of sets. Moreover, each object-preserving functor F: A—>B 
between algebraic theories determines a functor F*: Ens(B)—>Ens(A) 

between categories of algebras; such an F* is termed an algebraic 
functor. Lawvere proves that every such algebraic functor has an ad­
joint. This result includes many familiar cases of adjoints; for exam­
ple, if F is the process of forming the bracket product [a, b] =ab — ba 
from the usual product in associative algebras, then F* assigns to each 
associative algebra (over a field) the corresponding Lie algebra; its 
adjoint constructs to a Lie algebra the enveloping associative alge­
bra. In this case, the Poincaré-Birkhoff-Witt theorem asserts that 
the corresponding universal junction is a monomorphism. A central 
problem is that of determining general conditions on A, B, and F 
sufficient to insure that the appropriate universal junction is monic. 

25. PACTs. We now consider the special categories appropriate to 
higher homotopies. These categories involve Permutations, addit ion, 
Composition and Tensor product, so will be dubbed PACTs. Let 
K be a fixed commutative ground ring, and let "complex" mean 
DG^-object for K-Mod. A PACT P is a category with objects the 
natural numbers and with the following additional structures. 

(i) Each 

is a complex, with differential written as D and with the degree of 
each morphism ƒ : m-+n as | ƒ | . Composition in P is required to be a 
morphism 

of complexes. Here the tensor product on the left has the standard 
DG structure (§16). 

(ii) For each n, the symmetric group S(n) is a given subgroup 
of 
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(iii) There is a functor ®:PXP—»P, called tensor product, with 
object function tn<g>n = tn+n and mapping function a morphism 

( m\ (m'\ (m + m!\ 

>pCrp(.+J 
of complexes. Observe that the morphisms of P have degrees, so that 
the standard sign crops up in the definition of the composition in 
P X P : this amounts to inserting in (24.1) a sign ( — l) e withtf = | / | | g ' | . 

There are three axioms, which are exactly the axioms (2)-(4) for 
PROPs, with a sign (-l)i/N/'l inserted in (4). Each PACT has 
homology H(P), defined by 

with composition, permutation, and tensor product induced by the 
same structures from P. Then HÇ?) is also a PACT, with differential 
zero. 

Each complex X determines a PACT X. Set X° = K and Xm 

= X ® • • • ®X (m factors) and take 

x ( j = hom(X", Xn), 

with differential D of (14.4). The evident composition is known to 
be a morphism of complexes. If ƒ : Xm-*Xn and ƒ ' : Xm'-*Xn\ the 
tensor product ƒ ®f\ Xm+m'—>Xn+n' is defined as usual, as are the 
permutations. With these structures, X is a PACT. A PACT P is 
said to act on the complex X if there is given a morphism P-*X of 
PACTs. 

Now some examples. Just as each multiplicative group II yields a 
group algebra KQI), so each PROP H yields a PACT K(K) with triv­
ial grading and differential ; define each 

to be the free i£-module generated by the elements of 

To describe hopf algebras, take the free PACT with generators 
p: 2—»1, u: 0—>1, q: 1—>2, and v: 1—>0, and impose the relations (24.5) 
for an algebra, the relations 
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(q ® l)q = (1 ® q)q, (v ® \)q = 1 = #(1 <g> v) (for a coalgebra), 

the relations which would state that u (respectively, v) is a map of 
coalgebras (respectively, algebras), 

vp = v ® v: 2 —* 0, qu = u ® u: 0 —> 2, vu = 1: 0—» 0, 

and, finally, the relation corresponding to the diagram (17.4), 

(1) qp = (p ® p)(l ® T ® l)(q ® q) : 2 -» 2. 

These determine a PROP H/. Form the PACT X(H/). The statement 
that KÇH./) acts on X is exactly the statement that X is a 
DG(i£-Mod)-hopf algebra, because the action on X does give the 
product p, the unit u, the coproduct q, and the co-unit v for X, satis­
fying the requisite identities. If we add the relation pr = p, we get the 
PACT K(Hfc) for commutative hopf algebras; then adding rq = q 
gives the PACT i£(H /cc) for those hopf algebras with product and co-
product both commutative. 

We already know (§23) that each commutative DG-hopf algebra U 
yields a commutative DG-hopf algebra B* ( U)—in other words, each 
action of K(H./C) on U determines an action on B*(U). Making exten­
sive use of the DG-comparison homotopy, one may prove 

THEOREM 25.1. If K(Rfcc) acts on Z7, then there is a PACT 
PD2£(H/C) which acts on B*(U) and on B*(U) and a map 0: P->i£(H / cc) 
of PACT s such that the induced homology map 

e*:E{V)ç±H(K(1Ifcc)) 

is an isomorphism. 

This is a covert statement of the existence of higher homotopies. 
For example, the generator q acting on B* gives a coproduct which is 
not commutative, but gives a 0-cycle rq — q with image 0 under 0. By 
the asserted isomorphism 0*, P must then contain a morphism 
qii 1—>2 with Dqi = rq — q and, similarly, morphisms qki 1—>2 with 
Dqic+i = rqk — qk- These are the higher homotopies usually used to con­
struct Steenrod squares. Similarly, corresponding to the relation (1), 
there is a morphism r: 2—>2 in P with 

Dr = qip — (p ® p)(rqi ® q0 + q0 ® qt) 

—and a vast maze of such higher homotopies. Given this P acting on 
U, we conjecture that P will also act on B*(U) in such a way that the 
action will be consistent with the passage from the iterated bar con­
struction to the spaces K(Uf n). 
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26. Bicategories. The tensored categories, the PROPs, and the 
PACTs all have the following form: a triple (B, <S>, K) consisting of 
a category B, with a multiplication ® and a ground object K, to­
gether with jointly coherent natural isomorphisms a (associativity of 
®), c (commutativity of ®), and e, e' (K a left and right identity for 
®). (In the case of PROPs and PACTs, a, e, and e' are the identity, 
while c gives the transposition rG5(2 ) and hence, via coherence, the 
whole permutation structure.) Call such a triple (B, ®, K), or B® for 
short, a bicategory. While a category exhibits the functor horn, a bi-
category exhibits both the basic functors horn and ® for homological 
algebra. The bicategories have additional uses; for instance, we may 
describe the categories C "with morphisms in a given bicategory 
B®w as those categories C for which each homc(C, C') is an object of 
B while composition in C is a morphism hom(C', C")®hom(C, C') 
—>hom(C, C") of B. The desirability of such a description has long 
been recognized: For example, when B® is the category of graded sets 
with ® the product functor, a B®-category is a graded category; 
when B® is the category of abelian groups with the usual tensor prod­
uct, a B®-category is a (pre)-additive category (an additive category, 
less the biproduct axiom) ; when B® is DG(i£-Mod), C is a differential 
category, as employed in the unpublished work of Eilenberg-Moore. 

Another closely related notion is that of a category with an in­
ternal homfunctor (Kelly [59]) or an autonomous category (Linton 
[71]). Such a category K has a faithful functor K—»Ens, written 
A—»|^4|, a functor Horn: Ko pXK->K and a natural equivalence of 
the composite |Hom| to the ordinary (set-valued) horn functor. 
Moreover, if HA is the internal covariant horn functor, with HA(B) 
= Horn(A t B), there is to be a functor TA: K—>K and a natural iso­
morphism 

Kom(TA(B), C) £* Hom(£, HA(C))) 

in other words, TA is a strong adjoint to HA- Finally, there is a natural 
isomorphism HAHB=HBHA compatible, under ^^ = | üfA | , with the 
familiar bijection h\A\h\B\=h\B\h\A\- This last condition insures that 
TA(B) can be regarded as a multiplication A ®B, and insures coher­
ent associativity and commutativity. Such autonomous categories 
promise to be useful, in the same way in which the present notions of 
categories are effective tools in getting a systematic arrangement and 
understanding of quite a variety of mathematical ideas. 
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