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1. Let Hp, p — ly 2, be self-adjoint operators in a Hubert space & 
satisfying the condition 

(i) (m - s)-1 - (Ho - z)-1 e r(<p), z G p(ffo) n P(#i). 
Here, T(^p) denote^ the trace class of completely continuous oper­
ators in § and p(Hp) the resolvent set of Hp. The perturbation theory 
of absolutely continuous (abbr. a.c.) parts of Hp as well as the theory 
of wave and scattering operators has recently been studied inde­
pendently by de Branges [2], Birman and Kreïn [ l ] , and Kato [3], 
In [ l ] and [3] the problem was considered from the viewpoint of the 
scattering theory. In particular, the wave operators W± were proved 
to exist and hence to be partially isometric operators which give 
the unitary equivalence of a.c. parts of Ho and H\. In [2], on the con­
trary, similar partially isometric operators W± were constructed 
somewhat explicitly and without referring to the limit of wave oper­
ator type. The purpose of the present note is to study the latter 
approach from a viewpoint of the scattering theory and to see that 
the so-called time-independent or stationary approach to the theory 
of wave and scattering operators can be made possible under the 
condition (1). In a simpler case, a similar study was made in [4], 
Our construction of the operator similar to ÎY+, i.e. the operator given 
by the right side of (9), is similar to but slightly different from that 
given in [2]. In particular, the use of the auxiliary operator I in [2] 
is avoided. Furthermore, the construction of the operators WQ and TT\ 
in 3 might be a little more explicit than that of the corresponding 
operators given in [2]. 

2. Let 6 be a separable Hilbert space and let Tp= Tp(<$,) CT(<5) 
be the set of all non-negative operators in T((S). The trace norm will 
generally be denoted by r( ). Let /x be a Tp-valued measure defined 
for bounded Borel sets of the reals R1. Then the set function p, first 
defined at each bounded Borel set e as p(e)=T(jj,(e)) and then ex-

1 The work was partly supported by the National Science Foundation through 
Purdue University (NSF G-18920). The author wishes to express his thanks to Pro­
fessor Louis de Branges for valuable discussions and kind hospitality extended to 
the author while he was visiting Purdue University. 
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tended by additivity to the Borel field of R1, is a cr-finite (non-
negative) measure. 

The L2(JJL) space over fx is defined as in [2]. In particular, the set 
JLQ(M) of all functions f(x) from R1 into 6 such that ƒ" «,!ƒ(#) \2dp(x) 
< oo forms a dense subset of L2(/JL) (after identification of functions 
equivalent in a certain sense). The space L2(fi) can be identified 
with the direct sum of the L2 spaces over the absolutely continuous 
and singular components of /x: L2(JU) = L2(/xac) ®L2(/x8). The space 
L2(iAac) is then the a.c. subspace of L2(fx) with respect to the multipli­
cation operator by x in L2(fx). 

In what follows we assume as in [2] that every Tp-valued measure 
fx satisfies the condition 

———dp(x) < oo. 
-oo 1 + X2 

For such jit, the T-valued function <t>»,(z) of a complex variable z, 
I m 2 ^ 0 , is defined as 

I f 0 0 xz + 1 

7T •/ -oo (^ — Z)(l + tf2) 

(The integral on the right may be regarded as the (improper) integral 
of a scalar function with respect to a vector-valued measure. Here, we 
note that the use of the coordinate representation in S with respect 
to a complete orthonormal set allows us to make the definition of 
L2(/x) space as well as the interpretation of all the integrals appearing 
in this note by means of the theory of integration of a vector-valued 
function with respect to a scalar measure.) 

Now the following lemma, given in [2] and reformulated below in 
a slightly different form, will be our starting point. 

LEMMA, (i) The limits on reals of <£M(2) : 

$M(# ± *0) = lim ^(x ± ie), — oo < x < oo, 
«Jo 

exist in the Schmidt norm in E almost everywhere with respect to the 
Lebesgue measure. 

(ii) Let fi and v be Tv-valued measures both satisfying the condition 
such as (2). Let there exist self-adjont operators a and /? in S such that 

(3) {a + 0„(s)} {/3 + *,(*)} = {/? + *,(*)} {a + *,(*)} = - 1 

ZwZds /or ^ery nonreal z and put 

w{z) = a + <j>n(z), w±(x) — w(x ± iO). 
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Then, the mapping which assigns w±(x)f(x) to each /(#)£I>o(Mac) is 
well-defined as an isometric mapping Ll(fjLac) onto Ll(vac) and hence can 
be extended uniquely to a partially isometric operator Q± from L2(M) 
into L2(v) with the initial set L2(jjLac) and the final set L2(vac). Therefore, 
if we denote the operators of the multiplication by x in L2(ii) and L2(v) 
by A and B, respectively, then each of Q± gives the unitary equivalence 
between the ax. parts of A and B. 

(iii) Under the same assumption as in (ii), there exists a uniquely 
determined unitary operator T from L2(ii) onto L2(v) such that T maps 
( x - 2 ) _ 1 c 6 I o W 1° w{z){x — z)~1cÇ:Ll{v) for every nonreal z and c£&. 

Now, the following theorem establishes a connection of Q± with 
the "asymptotic limit" of wave operator type. 

THEOREM 1. Let JJL, V, A, B and T be as in the lemma. Then, we have 

0 ± = s-\im exp(itB)T exp(-~ it A) P, 

where P is the orthogonal projection in L2(ix) onto its sub space L2(juac). 

The proof of Theorem 1 is an adaptation of the arguments given in 
Kato [3, §5] which essentially prove Theorem 1 in the case of dim 6 
= 1. In particular, we get a kind of representation of T such as (4.5) 
of [3]. 

3. We shall next apply the foregoing consideration to the theory of 
wave operators. We shall begin with the following theorem which is 
deduced from Theorem 1 in a routine way. 

THEOREM 2. Let Hp, £ = 0, 1, be self-adjoint operators in a Hilbert 
space § and Pv the orthogonal projection onto the ax. sub space SDt̂  of 
§ with respect to Hp. Furthermore, let there exist a separable Hilbert 
space E, Tp((&)-valued measure /JL and v, and unitary operators TTQ and 
wifrom & onto L2(fx) and L2(v), respectively, such that {A and B are 
used as in Theorem 1): (i) Ho^ir^Awo, Hi = Trr1Bwi', and (ii) JJL and v 
satisfy the relation (3) with certain self-adjoint a and p. Then, the wave 
operator 

W± = s-lim exp(itH) exp(—itHo)Po 
t-+± 00 

exists if and only if there exists a unitary operator U± in § such that : 
(a) HiU±= U±Hi; and (b) lim^±00 (TT^ZVO— U±) exp( — itH0)u = Ofor 
each ^(E9J?o. In this case we have 

and hence W±& = 9Jîi. 



i964] ON A STATIONARY APPROACH TO SCATTERING PROBLEM 559 

We now assume that H"0 and Hi satisfy the assumption (1) and con­
struct /z, v etc. in such a way that they satisfy (i), (ii), (a) and (b) in 
Theorem 2. 

Let Up—(Hp~-i)(Hp-\-i)~
1 be the Cayley transform of Hp. Then, 

the assumption (1) implies that K=(UI--UQ)UÖ~1E:T(^>) and it is 
expressible as 

00 

k=l 

where (</>i, <£;) = 5^, | l +a& | = 1 , \ak\ 5^0, and ]Cl a * | <oo. Further­
more, let Hp = fxdEp(x) be the spectral resolution of Hp and let 
Fp(e) ~fe(l+x2)dEp(x) for each bounded Borel set e. 

Let now Ê be the closed subspace of S& spanned by {<j>k} and put 

(4) ix{e) = £*F0(«){, v{e) = r,*Fi(eh 

where £ and rj be given by 

oo oo 

A ; = l & = 1 

with {&} and {rç&} being square summable sequences to be deter­
mined below. £ and rj are considered to be operators from 6 to § so 
that ju(e)£T.p((S) and v(e)CzTp(0£). We further assume that a and (3 
in (3) have the form 

00 00 

(6) a = X) «*(•> 0*)0A, # = 11, Pk(', <l>k)<t>k 
fc=l A ; = l 

with bounded real sequences {ak}, {/?&} and want to determine these 
sequences so that the relation (3) is true. The source of a reciprocal 
relation such as (3) is the following reciprocal relation in the operator 
form: 

(7) {1 + K'(Uo - w)-1} {1 - K'(Ui - w)~1} = 1, I w I * 1, 

where we put Kf =Ui— Uo = KUo. On the other hand, (4) gives that 
a+(f>n(z) =a+iw~lt;*(Uo+w)(UQ--w)-1% with w—(z — i)(z+i)~l. By 
using this and the similar relation for v to express (3) in terms of w 
and comparing it with (7), we have the following proposition. 

PROPOSITION. If we put £&= |a&| 1/2£/c' with an arbitrary sequence 
{%k } of complex numbers such that 0 < a g | £/ | Sb<&> for some posi­
tive a and b, and determine {rjk}, {ak} and {fik} successively by the rela­
tions 
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2&ij* = — irak(âk + 1) = wâk, 

(8) ak = i7T-1(l + 2 / a , ) | & | 2 , 

ft = iir'1^ + 2/âk) \vk\2, 

then /x, v, a, and /3 defined by (4), (5), and (6) satisfy the relation (3). 
Furthermore, it automatically follows that {ak} and {ft} are real and 
bounded and that ^ I £& 12> S I *7* 12 < °° • 

We now construct TQ and in. We can assume without loss of gen­
erality that the set of all elements of § of the form 

n 

u = ^uk (Hp)4>k, 

with wjf} such that f\ u$\x)\ 2d\\Ev(x)4>k\\
2 < °° forms a dense set in 

§ for each £ = 0, 1. (The closure of the above set is independent of p 
and on its orthogonal complement we have Ho = Hi.) For such a 
u with p — 0 we define 

and (7Ti^)(x) similarly with £ replaced by 77. Then, 7r0 and xi can be 
uniquely extendable to unitary operators from § on L2(AO and L2(v), 
respectively. Now the very relation (8) which ensured the validity of 
(3) also implies the relation T7ro = wri. Thus, we have the following 
theorem. 

THEOREM 3. With ix, v, a, and (3 defined in the Proposition and 
7TP, p = 0, 1, constructed as above, the conditions (i), (ii), (a) and (b) in 
Theorem 2 hold true. Thus, under the assumption (1), W±(H\, H0) 
exists and is given by 

(9) W±(Hh Ho) = ~ m^iTTo 

with Q± constructed as in Lemma 1. 
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