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1. Introduction and summary. We shall consider sequences of sub­
sets of Euclidean w-space, especially convex sets that are not neces­
sarily bounded. A notion of convergence of a sequence of sets to a set 
is introduced, having the property that convergence of convex sets 
implies convergence of the corresponding polars, and, under a mild 
condition, of the corresponding projecting cones. It is, however, not 
true that convergence of convex sets is equivalent to pointwise con­
vergence of the corresponding support functions. Only after intro­
duction of a new type of convergence of a sequence of functions to a 
function (termed infimal convergence) is the desired equivalence 
achieved. The relation between a sequence of closed convex functions 
and the sequence of their conjugates is studied. I t turns out that 
either sequence converges infimally if and only if the other does. 
Finally, infimal convergence of closed convex functions implies con­
vergence of their level sets, under a mild condition. Most of the theo­
rems are valid in more general topological spaces, and sequences may 
be replaced by nets throughout. Proofs, lemmas and additional theo­
rems will appear elsewhere. 

2. Definitions and notation. Let 0 denote the origin. If x5*0, a ray 
from 0 through x is denoted (x). A cone is a union of rays. In the space 
of rays a metric can be introduced by identifying each ray with its 
intersection with the unit (ra — l)-sphere, and taking (for instance) 
the chord distance topology on the (w — l)-sphere. This defines open 
cone, etc. The projecting cone of a set X is PCX) — {(x): x G X } . The 
asymptotic cone of X is A (X) = {(x) : (x) = lim (xn), xnEX, | xn | —» oo }, 
where | | denotes Euclidean norm. The distance f unction d(X) of X 
is defined by d(X, x) =inf {|x — y\ : y(E.X}. The support function 
h(X) of X is defined by h(X, £) = sup!rex £•£, where • denotes inner 
product. DR is the w-disk of radius R. Closure of a set X is denoted 
by X or by CI [X]. 

3. Convergence of sets and projecting cones. If Xni X are sets, 
we shall define Xn—>X if d(Xn)—^d(X) pointwise. For closed limit 
sets this corresponds to a definition given by Frolik [3] for general 
topological spaces. If the sets are closed, it is possible to introduce a 
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metric agreeing with the above definition of convergence, by general­
izing the Hausdorff metric for bounded closed sets. 

THEOREM 1. Let {Xn} be a sequence of convex sets, and Xn-~>X, then 
for every open cone C~Z)A (X) there exist R and N such that Xn (ZC^JDR 

for alln>N. 

THEOREM 2. Let {Xn} be a sequence of convex sets, Xn—*X, and 
O&X, then P(Xn)->P(X). 

A proof of Theorem 2 will appear at the end of this paper. 

4. Support functions and conjugate functions. I t may be hoped 
that if Xn is convex, and Xn—>X, then h{X^)—^h{X). However, this 
is not so. In order to obtain the desired implication, and also the con­
verse, we introduce a new type of convergence of functions. If ƒ is 
a real-valued function, a n d p > 0 , define Pƒ(x) = inf {ƒ(y) : \y — x\ < p } . 

DEFINITION. We shall say that {fn} converges infimally to ƒ, written 

lim lim inf pfn = lim lim sup pfn = ƒ. 
P-+0 n-»w p—>o n—>» 

THEOREM 3. Let Xn, X be convex, then Xn—*X if and only if h(Xn) 

Following Fenchel [2] we call a convex function ƒ closed if limp^o Pf 
—f (for a convex function this is the same as lower semi-continuity). 
If ƒ is convex and closed, denote [X, ƒ ] = { ( # , a ) : x £ Z , a}zf(x)}, 
where X= {x: f(x) < oo }. Then [X, ƒ] is a closed convex subset of 
(m + l)-space. 

THEOREM 4. [Xn, fn]->[X, f] if and only iffn->intf. 

If ƒ is convex and closed, X defined as above, the conjugate f unction 
<t> of ƒ is defined [2] by <£(£) = supxex(^'X—f(x)). It is the support 
function of [X, ƒ] at (£, - 1 ) . Define S = {£: </>(£) < « }, then [2, <f>] 
is called conjugate to [X, ƒ] . The relation of being conjugate is re­
ciprocal. 

THEOREM 5. If the fn and <t>n are convex and closed, then /n—>inf/, 
if and only if <£n—»inf$. Therefore, using Theorem 4, [Xn, fn]-^[X, f] 
if and only if [S„, #»]->[E, $]. 

5. Polars and level sets. Let ƒ be a real valued function then for 
every real number a we define the level set La(f) = {x: f(x) ^a}. We 
write inf ƒ for inf f(x), where the infimum is taken over all x in the 
domain of ƒ. 
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THEOREM 6. If fn is convex and closed, and a>inif, then fn-*inif 
implies La(Jn)-*La(j). 

The polar (or dual) [ l ] of X is defined as X* = {£: %-x^l for all 
xeX}=Lt(HX)). 

THEOREM 7. If Xn is convex, then Xn—>X implies X*—»X*. 

PROOF OF THEOREM 2. For any cone C, {£: £ - x g l for all x £ C } 
» { f : f - * ^ 0 for all x G C } , so that C* = L0(h(Q). Put Cl[P(X)] 
= C, Cl[P(X n ) ] = C„, it is sufficient to show Cn—>C. Since C„ and C 
are convex and closed, and contain 0, we have C** = CM, C** = C 
[ l ] , so that by Theorem 7 it is sufficient to prove C%-^C*. Now 
%-x^0 for all tfGP(X) if and only if %-x^O for all xEX so that 
C* = Lo(h(X)). Similarly, C^ = Lo(h(Xn)). Using Theorem 3 we have 
h(Xn)—^inth(X). In Theorem 6 take ƒ„, ƒ to be h(Xn), &(X), respec­
tively, and take a = 0 > inf &CX") (since 0 (£X). We conclude Lo(h(Xn)) 
-»Lo(ft(X)). 
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