ON THE STRUCTURE OF SEMI-NORMAL OPERATORS¹

BY C. R. PUTNAM

Communicated by P. R. Halmos, July 7, 1963

- 1. **Preliminaries.** Only bounded operators on a Hilbert space $\mathfrak F$ of elements x will be considered. If A is self-adjoint with the spectral resolution
- (1) $A = \int \lambda dE(\lambda)$, and if $\mathfrak{F}_a = \mathfrak{F}_a(A)$ denotes the set of elements x for which $||E(\lambda)x||^2$ is an absolutely continuous function of λ , then \mathfrak{F}_a is a subspace; cf. [2, p. 240], [3, p. 436] and [6, p. 104]. If $\mathfrak{F} = \mathfrak{F}_a$, then A is called absolutely continuous. The one-dimensional Lebesgue measure of the spectrum of a self-adjoint operator A will be denoted by meas $\operatorname{sp}(A)$.

An operator T on \mathfrak{H} is called semi-normal if

(2) $TT^* - T^*T \equiv D \ge 0$ or $D \le 0$.

There will be proved the following result concerning such an operator.

- 2. Theorem. If T satisfies (2) and if $\mathfrak{M} = \mathfrak{M}_T$ is the smallest subspace of \mathfrak{F} reducing T and containing the range of D, then
- (3) $T+T^*$ is absolutely continuous on \mathfrak{M} , and, if \mathfrak{M}^{\perp} denotes the orthogonal complement of \mathfrak{M} (so that \mathfrak{M}^{\perp} also reduces T), then
- (4) T is normal on \mathfrak{M}^{\perp} .
- In addition,
- (5) $2\pi ||D|| \le ||T-T^*||$ meas $\operatorname{sp}(T+T^*)$, and the inequality (5) is optimal in the sense that there exist examples with $D \ne 0$ for which (5) becomes an equality.

As a consequence, if T is semi-normal but not normal, then $\mathfrak{G}_a(T+T^*)\neq 0$, a result which can also be concluded from [4, Corollary 3, p. 1029], where the symbol "<" should be replaced by "\neq"." (This same Corollary, incidentally, also implies the result proved by Andô [1] that a completely continuous semi-normal operator T must be normal. In fact, if T is completely continuous, so also are T^* and $T+T^*$. But the spectrum of $T+T^*$ clearly must be of measure zero.)

If θ is real and $T(\theta) = e^{i\theta}T$, then (2) is unchanged if T is replaced by $T(\theta)$. Also, it is clear that the set $\mathfrak{M}_{T(\theta)}$ is independent of θ . It follows that (3), (4) and (5) remain valid if, in each instance, T is

¹ This work was supported by the National Science Foundation research grant NSF-G18915.

replaced by $T(\theta)$. In particular then, relations (3) and (5) become assertions concerning the absolute continuity and spectra of both the real and the imaginary parts of a semi-normal operator T.

The proof of the Theorem will depend upon results proved in [5] and which will be stated here, in a form convenient for application, as a

LEMMA. Let H and J be self-adjoint operators and suppose that

- (6) HJ-JH=iC, where $C \ge 0$ or $C \le 0$. Then,
- (7) $\mathfrak{L} \subset \mathfrak{F}_a(H)$, where \mathfrak{L} denotes the smallest subspace reducing both H and J and also containing the range of C. Furthermore,
 - (8) $\pi ||C|| \le ||J|| \text{ meas sp}(H).$

It is clear from the symmetry of the condition (6) that (7) and (8) remain true if H and J are interchanged.

- 3. Proof of the Theorem. Let T be represented as
- (9) T=H+iJ, where $H=(T+T^*)/2$ and $J=(T-T^*)/2i$, so that (2) and (6) are equivalent by virtue of (9) and (10) D=2C.

It is clear that the space \mathfrak{L} of the Lemma must then coincide with the space \mathfrak{M} of the Theorem. Relations (3) and (5) now follow respectively from (7) and (8), while relation (4) is a consequence of the fact that \mathfrak{M}^{\perp} is contained in the null space of D. An example involving finite interval Hilbert transforms was given in [5] for which the hypothesis of the Lemma is fulfilled and for which (8) becomes an equality (with $C\neq 0$). This result in turn yields, by virtue of (9) and (10), an example in which equality holds in (5) and $D\neq 0$.

REFERENCES

- 1. T. Andô, On hyponormal operators, Proc. Amer. Math. Soc. 14 (1963), 290-291.
- 2. T. Kato, On finite-dimensional perturbations of self-adjoint operators, J. Math. Soc. Japan 9 (1957), 239-249.
- 3. S. T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimento (10) 12 (1959), 431-454.
- 4. C. R. Putnam, On commutators and Jacobi matrices, Proc. Amer. Math. Soc. 6 (1956), 1026-1030.
- 5. ——, Commutators, absolutely continuous spectra, and singular integral operators (to appear).
 - 6. P. R. Halmos, Introduction to Hilbert space, Chelsea, New York, 1951.

PURDUE UNIVERSITY