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1. Introduction. Suppose II is a group with a finitely generated 
abelian normal subgroup M and let $> = H/M, i.e. II satisfies the exact 
sequence 

(*) 0—> AT - » n -->$-> 1. 

The isomorphism class of II is determined by (A) the groups M and 
<E>, (B) the structure of M as a ^-module, and (C) a cohomology class 
a£üT2(<I>; M) which describes the extension (cf. [l]). In principle 
then it should be possible to compute iî*(II), the cohomology ring of 
II, from the above information. Practically, however, this seems to 
be impossible in general even if we assume known the cohomology of 
M and $. Our objective here is to solve an approximation to this 
problem. 

The Hochschild-Serre spectral sequence [2] provides us with a 
sequence of differential rings (Er, dr) (V=l, 2, • • • ) which approxi­
mate the ring if* (II) and such that Er+i = H(En dr). Hochschild and 
Serre computed E2 and found that Ep

2«z=LW($\ H*(M)). So E2 de­
pends only on (A) and (B) and is therefore a rather crude approxima­
tion to Jï*(II). We determine d2 (and hence E3) in terms of (A), (B), 
and (C). Hochschild and Serre found d2 on Efl ("the first row"), 
and our results can be thought of as a generalization of theirs. We 
assume we have coefficients in a field F although the results are valid 
in somewhat greater generality. 

In §2 we generalize a technique in [2] and define two newjpectral 
sequences Er and Er and a cup product pairing from Er ®Er to Er. 
The problem of computing d2 in E2 is reduced to computing â2 on a 
sequence of classes / n G ^ ' ° , and then the value of d2 on a class in 
E£p is equal to the cup product of bn—â2(f

n) and an appropriate class 
in 25*. 

In §3 we assume that (*) splits or equivalently that a = 0. In this 
case the entire spectral sequence (Sr, br) depends only on (A) and (B). 
The classes z>n = b2(/w) obtained in this case are called characteristic 
classes of the «E-module M. They provide some measure of the differ­
ence between the cohomology of the split extension $ • M and that of 
the direct product $XM. 
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§4 shows that the general case can be obtained from the special 
case by adding a correction term to vn, i.e. bn — vn+an. The correction 
term an is determined by a and Pon try agin multiplication in H*(M). 

Proofs and applications will appear in subsequent papers. We have 
used these results (especially Remark 2 in §3) to compute the co-
homology of certain flat Riemannian manifolds. 

We wish to thank Armand Borel for several stimulating conversa­
tions. 

2. We will omit writing the coefficient group when it is the field F. 
Since M is a ^-module, Hn(M) and Hn(M) are also «^-modules and if 
we consider M to act on them trivially, they become II modules in a 
natural way. We fix n, and let (Eri dr) (respectively (Êr, âr) ; respec­
tively (Er, dr)) be the spectral sequence for (*) with coefficients F 
(respectively Hn(M)\ respectively Hn(M)). There is a canonical iso­
morphism 0: ET-^Ef since 

#*>($; Hn(M)) ÊË #*($ ; #° (M; Hn(M))). 

Since JETn(M)!=Hom(iï»(M), F), evaluation gives a pairing from 
Hn(M) ®Hn(M) to F which induces a cup product pairing from 
Ê?«®'E?tQEl+9*+t. Now 

ET S H\$; Hn(M; Hn(M))) S Hom*(#n(M), Hn(M)). 

Let fnÇîÊ%n correspond to the identity map. 

LEMMA A. Let unEE%n. Then 

un = fn\J e(un). 

3. Let $ • ¥ be the split extension, i.e. $»ikf satisfies the split 
exact sequence 

(**) 0 - > M - * * - i l f ± ? * - > l . 

Let (@r, br) be the spectral sequence for (**) with coefficients Hn(M). 
Since the second term of the spectral sequence is independent of the 
extension, E2=@2, and we can consider fnG@2,w-

DEFINITION. Let ^ = b2(/
w)G@2,w"*1 = ^2,n""1. We call v» the nth 

characteristic class of the ^-module M. 
REMARKS. (1) vl is always 0. 
(2) If $ is a cyclic group of prime order, and M is torsionfree as an 

abelian group, then vn = 0 for all n. The proof of this apparently 
difficult fact uses the Z[M]-free resolution of Z described in [4] and 
the knowledge of the indecomposable ^-modules [3]. 
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(3) If $ is Z2 and M is Z8 and the generator of <£> takes a generator 
of M into five times itself, then v29é0. 

(4) Since vn depends only on the ^-module M, it is not surprising 
that vn can be defined without reference to a spectral sequence. 

4. Returning to the general case (*), recall a G H2($; M) 
^Jï2(<i>; Hi(M; Z)). Let %: ^ -> ^ send 1 into 1. x induces %*: 
i P ( * ; iJ i (M; Z))->fl*(*; ffi(ikf)). Let o' = X*(fl). Now Pontryagin 
multiplication gives a homomorphism H\(M) ®Hn-i{M)-*Hn(M), or, 
equivalently a homomorphism jffi(Af)—»Hom(fl"»-i(M), Hn(M)) 
g±Hn-l(M; Hn(M)). We define a » G # 2 ( $ ; H^(M; Hn(M))) = E%n~l 

to be the image of —a' under this coefficient homomorphism. 

LEMMA B. â2(f
n) = b2(/n) +an, i.e. 

In = vn _|_ an# 

THEOREM. d2(u
n) = bn\Jd(un) = (an+z>n)U0(ww). 

PROOF. Using Lemma A we have 

Since ö(ww)GS20, Lemma B completes the proof. 
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